

Schlussbericht vom 24.02.2023

zu IGF-Vorhaben Nr. 21508 N

Thema

Zersetzungsverhalten von Calcium-Aluminat-Zementhydratphasen in Feuerbetonen in Abhängigkeit von Verflüssigern und Porengefüge ("Zersetzungsverhalten von Zementhydratphasen")

Berichtszeitraum

01.11.2020 - 30.11.2022

Forschungsvereinigung

Forschungsgemeinschaft Feuerfest e. V.

Forschungseinrichtungen

Forschungsgemeinschaft Feuerfest e. V. (FGF)

Hochschule Koblenz, Fachbereich bauen-kunst-werkstoffe, Fachrichtung Werkstofftechnik Glas und Keramik (HS Koblenz)

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Inhaltsverzeichnis

<u>1.</u> <u>F</u>	orschungsthema	<u>4</u>
1.1.	Ausgangssituation	4
1.2.	Stand der Forschung und Entwicklung	6
<u>2. V</u>	Vissenschaftlich-technische und wirtschaftliche Problemstellung	18
2.1.	Druckabhängigkeit der thermischen Zersetzung der Hydratphasen	18
2.2.	Einfluss der Kristallmorphologie auf die thermische Stabilität der Hydratphasen	19
2.3.	Untersuchungsmethoden zur thermischen Zersetzung der Hydratphasen	19
<u>3.</u> Z	Ziel und Umfang der Untersuchungen	<u>. 22</u>
<u>4. N</u>	Materialien und Analysenverfahren	24
4.1.	Verwendete Ausgangsstoffe	24
4.2.	Untersuchungsreihen und Versatzvariationen	26
4.2.1.	Zementsuspensionen	26
4.2.2.	Modell-Feuerbetone	26
4.3.	Untersuchungsverfahren	31
4.3.1.	Rheologie – zeitabhängiges Ausbreitmaß (HS Koblenz)	31
4.3.2.	. Abbindekinetik – Ultraschalllaufzeit, Elektrische Leifähigkeit und pH-Wert (HS Koblenz).	32
4.3.3.	Explosionsneigung (HS Koblenz)	32
4.3.4.	Kaltbiegefestigkeit (HS Koblenz)	33
4.3.5.	Offene Porosität (HS Koblenz)	33
4.3.6.	Porengrößenverteilung (HS Koblenz)	33
4.3.7.	. Permeabilitätsmessungen (Fa. Imerys, Mitglied im projektbegleitenden Ausschuss)	34
4.3.8.	Röntgendiffraktometrie (HS Koblenz)	34
4.3.9.	Rasterelektronenmikroskopie (HS Koblenz)	35
4.3.10	0. Aufheizverhalten – Methode des Monotonen Aufheizens MMH (FGF)	35
4.3.1	1. Thermogravimetrie TG (FGF)	37
4.3.12	2. Laser Flash Analyse LFA (FGF)	38
4.3.13	3. Radar (HS Koblenz)	41
<u>5.</u> <u>L</u>	Intersuchungsergebnisse	44
5.1.	Untersuchung der Hydratphasenbildung an Zementsuspensionen (HS Koblenz)	. 44
5.2.	Entwicklung neuer Modell-Feuerbetone mit abgestuften Zementgehalten und	
	verschiedenen Verflüssigern (HS Koblenz)	46
5.2.1.	. Verarbeitungseigenschaften, Abbindeverhalten und Festigkeitsentwicklung (HS Koblenz)) 46
5.2.2.	Technologische Eigenschaften: Biegezugfestigkeit, offene Porosität und	
	Porengrößenverteilung nach Trocknung und nach Brand (HS Koblenz)	62
5.2.3.	. REM-Untersuchung der Hydratphasenmorphologie nach Hydratation (HS Koblenz)	70

5.3.	Untersuchung der Explosionsneigung der Modell-Feuerbetone (HS Koblenz)	74
5.4.	Aufheizverhalten der Modell-Feuerbetone mit MMH-TG (FGF)	75
5.4.1.	Regular Castable (RC) – Zuordnung der MMH-Signale	76
5.4.2.	MCC mit verschiedenen Verflüssigern und Modifikationen mit Fasern	81
5.4.3.	LCC mit verschiedenen Verflüssigern und Modifikationen mit Fasern	89
5.4.4.	ULCC mit verschiedenen Verflüssigern und Fasern	92
5.5.	MMH an zerkleinerten Feuerbetonen (FGF)	94
5.5.1.	Einfluss des Porengefüges auf das Entwässerungsverhalten – Gegenüberstellung der	ММН-
	Signale der Feuerbetone mit denen der Schüttungen	99
5.6.	Laser Flash Analyse LFA (FGF)	103
5.6.1.	Einfluss der sich durch Hydratzersetzung ändernden Porosität auf die TLF	104
5.6.2.	Untersuchung der Kinetik der Zersetzung der Hydratphasen mit LFA	106
5.7.	Radar-Untersuchung der Modelbetone (HS Koblenz)	111
5.8.	Untersuchung der Eigenschaften der bis zu festgelegten Temperaturstufen	
	aufgeheizten Feuerbetone (HS Koblenz)	116
5.8.1.	Mineralphasenanalyse (Rietveld-Verfeinerung)	117
5.8.2.	Beschreibung der morphologischen Gestalt der Hydratphasen-Kristalle mit hochauflös	
	Rasterelektronenmikroskopie	
5.8.3.	Untersuchung der Kaltbiegezugfestigkeit (KBF) durch 3-Punkt-Biegeversuch	129
5.8.4.		
5.8.5.	Untersuchung der Porengrößenverteilung (PGV) mit Quecksilberdruckporosimetrie	135
5.8.6.	Untersuchung der Permeabilität	147
<u>6.</u> Z	usammenfassung und Diskussion der erzielten Ergebnisse	149
6.2.	Methoden zur Unterstützung der Interpretation des Trocknungs- bzw. Entwässeru	ngs-
	verhaltens – Charakterisierung der Feuerbetone nach thermischer Vorbehandlung	յ 155
6.3.	Bestimmung der Zersetzungsgeschwindigkeit der Hydratphasen mit LFA	163
6.4.	Untersuchung der Zersetzung der Hydratphasen mit MMH-TG	165
6.4.1.	Zuordnung der Signale S1 – S7 zu konkreten Entwässerungsreaktionen	166
6.4.2.	Korrelation der MMH-Signale mit den Ergebnissen der RBA-Untersuchungen an den M	лсс
	mit thermischer Vorbehandlung entsprechend Tabelle 12	170
6.4.3.	Einfluss von Verflüssigern auf die Zersetzung von Zementhydratphasen	171
6.4.4.	Einfluss der zugesetzten Fasern (über ihre Auswirkung auf das Porengefüge) auf die	
	thermische Stabilität der Zementhydratphasen	172
6.4.5.		
6.4.6.	Einfluss des Porengefüges auf die Zersetzung von Zementhydratphasen	176
7. F	azit	179

8.	Literaturverzeichnis	18	3
----	----------------------	----	---

1. Forschungsthema

Zersetzungsverhalten von Calcium-Aluminat-Zementhydratphasen in Feuerbetonen in Abhängigkeit von Verflüssigern und Porengefüge ("Zersetzungsverhalten von Zementhydratphasen")

1.1. Ausgangssituation

Feuerbetone bestehen aus feuerfesten Grundstoffen (Körnungen), Additiven und einem Bindersystem. Sie werden, mit Wasser vermischt, bei Feuerfestherstellern zu Fertigbauteilen vergossen oder bei Feuerfestnutzern als Zustellung in Hochtemperatur-Aggregate gegossen oder gespritzt. Der Anteil von Feuerbetonen an feuerfesten Erzeugnissen steigt stetig an (2000: 40 %, 2019: 44 %). Aus Feuerbetonen hergestellte Bauteile und Zustellungen benötigen keine energieintensiven und teuren keramischen Vorbrände, denn sie entwickeln ihre Festigkeit durch Temperaturbeaufschlagung beim Aufheizen und im Einsatz.

Feuerbetone auf der Basis von hydraulisch abbindendem Calcium-Aluminat-Zement (engl. "CAC") dominieren den Markt. Bei der Zugabe von Wasser bilden sich Zementhydratphasen (Calciumaluminathydratphasen = CAH-Phasen, Aluminiumhydratphasen = AH-Phasen), die für die hydraulische Erhärtung verantwortlich sind. Beim Trocknen/Aufheizen entwässern die verschiedenen Zementhydratphasen bei Temperaturen zwischen ~130 bis ~550 °C und bilden ab etwa 1000 °C Calciumaluminatphasen, die eine keramische Bindung mit hoher Festigkeit ausbilden.

Das Trocknen dieser Feuerbetone erfordert große Sorgfalt beim Aufheizen. Hierbei wird zunächst das nicht chemisch gebundene Porenwasser verdampft. Ab etwa 130 °C geht man davon aus, dass sich die Zementhydratphasen thermisch zersetzen, wodurch weiteres Wasser freigesetzt wird. Der

dabei im Inneren der Bauteile oder Zustellungen entstehende Wasserdampf muss über die Porosität an die Bauteiloberfläche entweichen. Porosität (offen/geschlossen) und Porengrößenverteilung sind somit wichtige Parameter zur Beschreibung des Porengefüges, welches letztlich die Permeabilität der Feuerbetone bestimmt und somit eine kritische Größe für das Aufheizverhalten darstellt. Das Porengefüge in Feuerbetonen entsteht auch durch die Zementhydratphasen selber, die bei der Zerset-

Bild 1: Herdwagen nach Explosion eines Bauteils aus CAC-Feuerbeton beim Aufheizen.

zung ihr Volumen verringern und dabei ein feines zusätzliches Porengefüge hinterlassen. Bei dem Trocknungs-/Aufheizprozess von Feuerbetonen verändert sich somit <u>dynamisch</u> ihr Porengefüge, wovon sowohl der Transport des Wassers an die Oberfläche wie auch das Zersetzungsverhalten der

Zementhydratphasen (das abhängig ist vom Wasserdampfpartialdruck im Porengefüge) beeinflusst werden.

Bei zu schneller Aufheizung besteht grundsätzlich die Gefahr, dass der ansteigende Wasserdampfdruck im Porengefüge die Festigkeit der Struktur übersteigt. Es kommt zu Abplatzungen oder die Bauteile bzw. Zustellungen explodieren (siehe Bild 1). Daher wird mit sehr geringer Rate aufgeheizt (sechs Tage bis 1500 °C). Für die Wirtschaft ist es von hoher Bedeutung, das Trocknungsverhalten zu verstehen, um sicher aufzuheizen (keine Gefährdung, kein zerstörtes Bauteil/Zustellung) und Aufheizzeiten zu verkürzen (um Energieverbrauch und Kosten zu senken) /BDG13/.

Das Trocknungsverhalten wird außer von dem Porengefüge des Feuerbetons (Abtransport des Wassers) natürlich von der **Zersetzung der Zementhydratphasen** (Dehydratation = Abspaltung von H₂O, das dann in flüssig oder als Dampf im Porengefüge vorliegt) bestimmt. In dem IGF-Vorhaben "Modifizierte Zementhydratphasen" (IGF 19855 N, gleiche FE wie in diesem IGF-Vorhaben) wurden Messmethoden entwickelt, mit denen die Zersetzung von Zementhydratphasen in-situ in Feuerbetonen untersucht werden kann (MMH /SIM19/ und Radar/Hochfrequenzanalytik /STE19/, Beschreibungen in Kapitel 4.3.10 und 4.3.13). MMH reagiert mit hoher Empfindlichkeit auf die Siedeenthalpie von Wasser und die Zersetzungsenthalpien der Zementhydratphasen. Die Methode ermöglicht so die Bestimmung der Temperaturen, bei denen Porenwasser siedet (abhängig vom Wasserdampf-Partialdruck im Porengefüge) und bei denen sich die Zementhydratphasen zersetzen (Zersetzungstemperatur, ebenfalls beeinflusst vom Partialdruck im Porengefüge). Begleitend zu MMH zeigen Messdaten der Thermogravimetrie, wann Wasser den Feuerbeton verlässt.

Das Radar-Verfahren, das mit Thermogravimetrie an einem Prüfkörper kombiniert ist, zeigt den Aggregatzustand des Wassers (flüssig oder gasförmig) während des Trocknens/Aufheizens an und liefert die Information, wann Wasser das Porengefüge verlässt. Mit diesen Methoden wurde bestätigt, dass die Zersetzung von Zementhydratphasen druckabhängig ist und damit abhängig vom Porengefüge. Dabei werden die Zementhydratphasen durch einen hohen Wasserdampfdruck in einem wenig permeablen Porengefüge stabilisiert. Allerdings wurde an zwei Stellen deutlich, dass das aktuelle Wissen nicht ausreicht, um das Trocknungsverhalten zu verbessern:

- 1. Die eingesetzten Verflüssiger beeinflussen stärker als erwartet die Bildung bzw. Kristallisation der Zementhydratphasen (und damit ihre Art und morphologische Gestalt) und damit <u>auch ihr Zersetzungsverhalten</u>. Es sollte daher untersucht werden, wie durch Verflüssiger das Zersetzungsverhalten von Zementhydratphasen und das Trocknungsverhalten von Feuerbetonen verbessert werden kann.
- 2. Bei der Zersetzung der Zementhydratphasen verändert sich das **Porengefüge** in Feuerbetonen, da die zersetzten Phasen feine zusätzliche Porosität hinterlassen. Allerdings liegt das bei der Zersetzung freiwerdende H₂O bei entsprechend hohen Porendrucken zunächst noch als

Flüssigkeit vor und befindet sich im Porenraum, bis es schließlich abgesiedet ist. Vermutlich schafft die durch die Zersetzung einer Hydratphase neu gebildete Porosität erst dann auch neue Permeabilität, die das weitere Fortschreiten der Entwässerung erleichtern kann. Das veränderte Porengefüge beeinflusst über die neu geschaffene Permeabilität den Poreninnendruck und somit das weitere Zersetzungsverhalten der Zementhydratphasen. Die beiden Faktoren, die das Trocknungsverhalten von Feuerbetonen bestimmen (Zersetzungsverhalten von Zementhydratphasen und Porengefüge), beeinflussen sich also gegenseitig. Schon im IGF-Vorhaben 19855 N /SIM20/ zeigte sich, dass mit steigendem Wasserdampfpartialdruck im Porengefüge Hydratphasen zu höheren Temperaturen stabilisiert werden. Somit ist das durch das Porengefüge bestimmte Entgasungsverhalten mit entscheidend für die thermische Stabilität der Zementhydratphasen. Es sollte daher untersucht werden, welchen Einfluss das Porengefüge auf das Zersetzungsverhalten von Zementhydratphasen hat und wie das Trocknungsverhalten von Feuerbetonen gezielt verbessert werden kann.

Das Problem auf Seiten der Wirtschaft war, dass Bauteile und Zustellungen aus CAC-basierten Feuerbetonen aus Sicherheitsgründen betont langsam aufgeheizt werden müssen, da nicht ausreichend Wissen über die Zersetzung der Zementhydratphasen in Abhängigkeit von eingesetzten Verflüssigern und vom (auch bei der Zersetzung neu gebildeten) Porengefüge vorhanden ist. Dies verringert die Produktivität und erhöht die Kosten bei Feuerfestherstellern und Feuerfestnutzern.

Das FuE-Vorhaben verfolgte daher zwei Ziele, die zusammengenommen ein detailliertes Bild des Trocknungsverhaltens von Feuerbetonen zeichnen. Der neue Ansatz war, dass sowohl die Mineralogie der gebildeten Hydratphasen (d.h. die Phasenassoziation und die morphologische Ausbildung der Kristalle, die sich während der ersten Aufheizung und im Zuge der Entwässerung verändert) als auch die dynamische Entwicklung des Porengefüges während des Trocknens/Aufheizens berücksichtigt werden. Einerseits beeinflusst die Ausbildung der Zementhydratphasen das Porengefüge, wodurch ein sich änderndes Entwässerungsverhalten erwartet wird – andererseits kann davon ausgegangen werden, dass Zementhydratphasenkristalle unterschiedlicher Morphologie unterschiedliche spezifische Oberflächen aufweisen. Je größer die spezifische Oberfläche der Zementhydratphasen ist, desto reaktiver werden sie und umso schneller werden sie thermisch zersetzt.

1.2. Stand der Forschung und Entwicklung

Abbindereaktionen

Neben den Verarbeitungseigenschaften ist die Abbindereaktion nach der Formgebung ein Dreh- und Angelpunkt der Prozesstechnologie für Feuerbetone. Sie wird maßgeblich durch das verwendete Bindersystem vorgegeben. Das Bindersystem an sich besteht nicht nur aus dem hydraulischen Binder.

Es enthält Zusätze, die eine oberflächenaktive Wirkung auf die wachsenden Kristalle der Zementhydratphasen besitzen. Der Einfluss des verwendeten Verflüssigers auf die Abbindereaktion ist sehr deutlich, sodass bei Versuchen zur Abbindekinetik (mit Messung durch Ultraschall, elektrische Leitfähigkeit, Temperaturentwicklung und pH-Wertentwicklung) für jede Verflüssigergruppe klar zuordbare Verlaufsmuster erkannt werden.

Nach Zugabe von Wasser zum Feuerbeton beginnen sich die Zementphasen darin zu lösen. Bei Erreichen der Sättigungskonzentration kristallisieren aus der Lösung Zementhydratphasen, die sich im Wassergehalt und im C/A-Verhältnis unterscheiden. Die wichtigsten Phasen sind CAH₁₀, C₂AH₈ und C₃AH₆. Daneben fällt kristallines AH₃ (=Gibbsit) und amorphes AH_x-Gel aus. Weitere Hydratphasen können entstehen, beispielsweise Bayerit als eine kristalline Modifikation von AH₃. Je nach Abbindetemperatur bilden sich diese Phasen in einem unterschiedlichen Verhältnis zueinander. Bei niedrigen Temperaturen bildet sich bevorzugt CAH₁₀. Ab etwa 10 °C treten die Phasen C₂AH₈ und AH₃ hinzu. Ab einer Temperatur von etwa 24 °C ist die Bildung von C₃AH₆ möglich (siehe Bild 2). Für die hier untersuchten, auf Korund basierenden und CAC-gebundenen Feuerbetone wird nach dem Abbinden allgemein mit einer primären Hydratphasenparagenese bestehend aus AH_x-Gel, CAH₁₀ und C₂AH₈ gerechnet /SOR95, PEN99, PAR08/. Die Zementhydratphasen CAH₁₀ und C₂AH₈ sind metastabil und gehen schon bei Temperaturen deutlich unter 100 °C mit der Zeit in die stabile Phase C₃AH₆ über, wobei ein Teil des Hydratwassers frei wird und zudem AH₃ (Gibbsit) gebildet wird /PAR05/. Allerdings muss davon ausgegangen werden, dass in bereits abgebundenen Feuerbetonen eine Zersetzung der genannten metastabilen Phasen kinetisch gehemmt ist, sodass eine Umwandlung im normativ (DIN EN ISO 1927) festgelegten Abbindezeitraum von 48 Stunden nicht relevant ist. Umgewandelte CAH-Phasen kennzeichnet keine typischen Kristallmorphologie, denn die Umwandlung erfolgt pseudomorph nach Tracht und Habitus der Ausgangshydrate, die während des Abbindens gebildet wurden. Antonovič et al. zeigten, dass die während des Abbindens ausgebildeten Kristallformen selbst bei Temperaturen von 800 °C pseudomorph erhalten bleiben /ANT13/. Es muss also damit gerechnet werden, dass morphologische Untersuchungen der Kristalle mit Rasterelektronenmikroskopie die während des Abbindens gebildeten Morphologien ergeben können.

Calciumaluminatzemente sind Sonderprodukte, die für den Einsatz in Feuerbetonen entwickelt wurden. Dabei handelt es sich um binäre Mischungen aus CaO und Al₂O₃, wobei ein Al₂O₃-Gehalt von 70 Ma.-% typisch ist. Um eine hohe Temperaturbeständigkeit zu gewährleisten, wird der Anteil an Verunreinigungen bewusst geringgehalten.

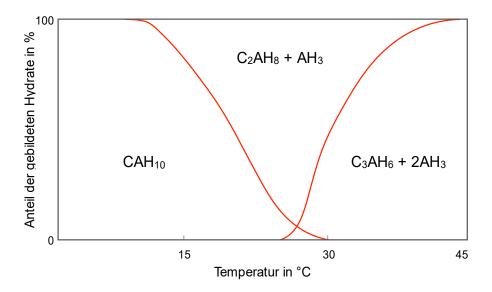


Bild 2: Temperaturabhängige Predominanz der beim Abbinden gebildeten Zementhydratphasen /LEE01/.

Tabelle 1: Zusammensetzung von Calziumaluminatzementen für die Feuerfestindustrie /GAR96/.

Phase	CaO (%)	Al_2O_3 (%)	Melting point (°C)	Density (g.cm ⁻³)
С	99.8		2570	3.25 - 3.38
$C_{12}A_7$	48.6	51.4	1360 - 1390	2.69
CA	35.4	64.6	1600	2.98
CA_2	21.7	78.3	1750 - 1765 (decomposition)	2.91
CA_6	8.4	91.6	1830	3.38
α-Α	-	99.8	2051	3.98

Damit unterscheidet sich diese Produktgruppe maßgeblich von den in der Bauchemie gebräuchlichen Tonerdeschmelzzementen und Portlandzementen, bei denen die Bildung von eisenhaltigen Mineralen eine wichtige Rolle spielt. Die Hauptmineralphasen in kommerziellen CA-Zementen mit 70 Ma.-% Al₂O₃ für die Feuerfestindustrie bilden Krotit (CA) und Grossit (CA₂). Daneben können noch Korund (A) und Mayenit (C₁₂A₇) in Spuren auftreten. Die Lösung der Zementphasen durch Wasserzugabe und anschließende Fällung (Kristallisation) der Hydratphasen beim Abbinden führt zur Ausbildung der "Grünfestigkeit" der Feuerbetone. Dabei hat die beim Abbinden vorliegende Temperatur einen erheblichen Einfluss auf die Art der entstehenden Hydratphasen /GEO94, CAP90/ (siehe Bild 2). Die bei der CA-Zementhydratation ablaufenden Reaktionen sind bis heute noch nicht abschließend aufgeklärt. Unumstritten ist jedoch die heterogene Lösungs-Wiederausscheidungs-Reaktion von CA-Zement in Wasser zu CA-Hydratphasen /SCR98/. Ansätze zur detaillierteren Beschreibung von chemischen Mechanismen des Abbindens von CA-Zementen in Feuerbetonen wurden an anderer Stelle zusammengefasst /SIM20/.

Le Chatelier stellte fest, dass sich während der Hydratation von grobem CA-Zement eine nahezu undurchlässige 0,5 mm starke Passivierungsschicht bildet, die die Hydratation über Monate hinweg unterdrückt /CHA87/. Tretin et al. beschreiben die Hydratationsgeschwindigkeit im ersten Zeitabschnitt der Hydratation als oberflächendominiert. Mit zunehmendem Hydratationsfortschritt wechselt die Reaktion in einen diffusionsgesteuerten Prozess, da die CA-Zementoberflächen durch Hydratationsprodukte belegt werden /TRE87/. Fujii et al. postulieren die Bildung einer dichten AH₃-Gelschicht auf den CA-Zementpartikeln. Bei der Diffusion von Ca²⁺-lonen durch diese Gelschicht hydratisieren diese teilweise zu C_xA_vH_z-Phasen. Durch den Kristallisationsdruck in der Gelschicht aufgrund der Volumenzunahme durch die Hydratation bilden sich Risse, die eine Zerstörung der Gelschicht zu Folge haben /FUJ86/. Cong et al. bestätigen diese Theorie, indem die Al-NMR-Untersuchungen durchführten /CON93/. Von Capmas et al. wird eine CAH₁₀-reiche Schicht auf dem unreagierten CA-Zement vermutet, die das Lösen des CA-Zements im Wasser hemmt /CAP90/. Leitfähigkeitsuntersuchungen von Parr et al. deuten darauf hin, dass bei einem W/Z-Wert von 1,44 ein deutlicher Anstieg der Ionenkonzentration zu verzeichnen ist, wenn die Haupthydratation stattfindet /PAR08b, PAR10/ Dies deutet darauf hin, dass eine Lösungshemmung vorliegt, bevor die Haupthydratation startet. Klaus et al. diskutieren in diesem Zusammenhang eine hydratisierte Passivierungsschicht aus AHX und C₂AH_X /KLA15/. Es wird die Bildung eines Gels aus Cit³⁻, Ca²⁺ und Al(OH)₄⁻ im Porenwasser während des frühen Lösens des CA-Zements einer Suspension nachgewiesen, von der vermutet wird, dass dieses Gel sehr dicht ist und weiteres Lösen des CA-Zementes im Wasser hemmt /OLI03/. Nach Götz-Neunhoeffer lösen sich zunächst zügig Ca²⁺-lonen aus der Oberfläche der CA-Zementpartikel im Wasser. Es bleibt eine schlecht lösliche und teilporöse Al-Hydroxo-Hydratschicht zurück die eine Löslichkeitsbarriere auf CA-Partikeln (Ca²⁺ und Al(OH)₄-) darstellt. Diese Al-Hydroxo-Hydratschicht altert und löst sich vom CA-Partikel ab. Nach der Abtrennung ist weiteres Lösen von Ca²⁺-Ionen möglich. Eine Ursache für den Alterungsprozess wird nicht gegeben. Die Al-Hydroxo-Hydrat-Schicht weist eine undefinierte Zusammensetzung (Al(OH)_x(H₂O)_y) auf. Sie muss jedoch kristallografisch einigermaßen definiert sein, da sie röntgenographisch nachweisbar ist /GÖT05, GÖT06/. Nach Kasper et. al. kann die Auflösung besagter Schicht auch mit dem stetig höher werdenden alkalischen Milieu und der damit erhöhten Löslichkeit von Aluminium erklärt werden /KAS17/. Maeda et al. berichten von einer Filmbildung auf CA-Zementpartikeln, vor allem in Kombination mit Verzögerern und einem Kieselsol, die das Lösen des CA-Zementes hemmen, ohne aber eindeutige Indizien für die Filmbildung zu geben oder die Zusammensetzung des gebildeten Films anzugeben /MAE09/.

Auch die Ausbildung der Zementhydratphasen ist kinetisch gehemmt. Hier ist die Bildung der Hydrate stark von deren Keimbildung abhängig /CAP90/. George et al. deuten den Zeitabschnitt konstanter elektrischer Leitfähigkeit und konstanter Temperatur während des Abbindens als Keimbildungszeit für Hydrate /GEO94/. Gemäß Bushnell-Watson et al. ist der geschwindigkeitsbestimmende Schritt des Abbindens in der Bildung von amorphen oder kristallinen C_xA_yH_z-Phasen oder der Kristallisation

von amorphen Hydratphasen zu verorten. Verzögernd oder beschleunigend wirkende Additive beeinflussen die Keimbildung der Hydrate /BUS90/. Fujii et al. nehmen eine Kristallisation der Hydratphasen auf CA-Zementpartikeln an, wodurch eine Keimbildung und Kristallisation in der Lösung nicht mehr erforderlich ist (Epitaxie) /FUJ86/. Barret et al. allerdings kommen auf Basis ihrer Untersuchungen zum Abbindeverhalten zu dem widersprechenden Ergebnis, dass die Zementhydrate nicht als Kristallisationskeime für CAH-Phasen und AH3 dienen, sondern die Ausscheidung über den Schritt einer homogenen Keimbildung erfolgt. Der Verweis von Barret et al. auf unveröffentlichte Messdaten der Firma Lafarge deutet an, dass nach dem Mischen von CA-Zement und Wasser und bereits vor dem Erreichen der Maximalkonzentration an CaO und Al₂O₃ in der Lösung erste Hydrate gebildet werden, die folglich als Keime zur Fällung von CAH-Phasen und/oder AH3 dienen können. Dieser Widerspruch wird von Barret et al. nicht aufgelöst /BAR74a/. Lamour et al. weisen eine frühe Bildung amorpher Hydrate unmittelbar nach dem Mischen sowohl in der Lösung als auch auf den Oberflächen der CA-Zementpartikel nach. Die in der Lösung gebildeten Hydrate sind Al₂O₃-reich, die auf den CA-Zementpartikeln Ca²⁺-reich. Gut kristallisierte Hydrate bilden sich erst nach einer sogenannten dormanten Phase, die von Lamour et al. als Keimbildungszeit interpretiert wird. Während der Haupthydratation lösen sich die amorphen Hydrate aufgrund ihrer höheren Löslichkeit auf und bilden kristalline Hydratphasen /LAM01/. Gessner et al. berichten von der Bildung amorpher CAH-Phasen zu Beginn des Abbindens, die im weiteren Verlauf auskristallisieren /GES95/.

Während des Abbindens nimmt die Festigkeit des Feuerbetons zu, die je nach Bindersystem einen bislang nicht im einzelnen spezifizierten Anteil an Koagulation aufweist. Während der fortschreitenden Hydratation durch den Wasserentzug im Gefüge nähern sich die Partikel in der Matrixsuspension an. Durch diese Annäherung kommt es ab einem charakteristischen Porenwasseranteil für jede Rezeptur zu einer Koagulation, die einen starken Anstieg der Viskosität hervorruft. Anderseits führt auch das Lösen von Kationen und Anionen aus dem CA-Zement und anderen Rohstoffen zu einer Koagulation der Partikel in der Matrixsuspension eines Feuerbetons. Diese wird durch eine Kompression der diffusen Schicht bei erhöhter Ionenkonzentration und/oder in den meisten Fällen auch durch eine Veränderung des pH-Wertes im Porenwasser hervorgerufen.

Maeda et al. folgern aus Untersuchungen zur Abbindekinetik und der chemischen Zusammensetzung des Porenwassers während des Abbindens, dass das Lösen von Ca²⁺ aus dem CA-Zement eine Koagulation der feinsten Partikel im Feuerbeton bewirkt und so zu einer ersten Verfestigung noch vor der Hydratation beiträgt /MAE09/. Das erste Abbinden ist nach Jiang et al. auf koagulationsbedingte Effekte zurückzuführen /JIA95, JIA96/. Von Gauckler et al. wurden zudem Untersuchungen zur gezielten Koagulation keramischer Suspensionen durchgeführt /BAA95, TER04, STU02/. Auf diese Weise wird eine rasche Verfestigung keramischer Suspensionen auf diverser Rohstoffbasis möglich. Es werden jedoch nur sehr geringe Druckfestigkeiten (20 bis 65 kPa) bei koagulierten Suspensionen erreicht /STU02/. Studart et al. haben diese Vorgehensweise auf Feuerbetone übertagen und ein

mäßiges Erhärten von Feuerbetonen einzig durch die Erhöhung der Ionenkonzentration und eine Verschiebung des pH-Wertes ermöglicht /STU02/.

Entwässerung der Zementhydratphasen in Feuerbetonen

Bei der Verarbeitung von Feuerbetonen mit Calciumaluminatzement (CAC) bilden sich durch die Zugabe von Wasser zunächst Calciumaluminiumhydrat-Bindephasen und Aluminiumhydrat-Bindephasen, die für die Grünfestigkeit verantwortlich sind /GÖT06, KRA12, KLA13, KLA14, KLA15, TIS15/. Beim Aufheizen zersetzen sich die Zementhydratphasen, zum Teil schrittweise und geben dabei ihr Kristallwasser ab. Ab ~ 950 °C bilden sich aus den wasserfreien Phasen schrittweise die Calciumaluminate $C_{12}A_7$, CA, CA_2 und in Korund-basierten Feuerbetonen ab etwa 1450 °C schließlich CA_6 , welche die keramische Bindung ausbilden /ROE82/.

Einfluss von Verflüssigern auf die Morphologie und auf die Zersetzung von Zementhydratphasen und damit auf das Trocknungsverhalten von Feuerbetonen

Im IGF-Vorhaben "Modifizierte Zementhydratphasen" (IGF 19855 N /SIM20/) wurde ein Einfluss des verwendeten Verflüssigers auf die thermische Stabilität der gebildeten Zementhydratphasen in Feuerbetonen festgestellt. Die Hydratphasen in einem Referenzbeton zersetzten sich bei Verwendung von Tripolyphosphat als Verflüssiger bei 15-20 K niedrigerer Temperatur als bei Verwendung von Castament FS 60 (Polymertechnologie auf Basis Polyethylenglykol). Der Einfluss wurde aber nicht systematisch untersucht. Als Ursache wurde angenommen, dass eine durch den Verflüssiger beeinflusste Morphologie der Zementhydratphasen deren thermische Stabilität verändert /KRA19, SIM19/. Eine Beeinflussung der Morphologie wachsender Kristalle durch oberflächenaktive Substanzen ist als "Exomorphose" bekannt /KLE90/. Der Mechanismus beruht auf einer selektiven Anlagerung von Molekülen (aus dem verwendeten Verflüssiger) auf den verschiedenen kristallografischen Wachstumsflächen der Zementhydratphasen. Ferner kann es sein, dass die verwendeten Verflüssiger bereits beim Abbinden die Assoziation (Mineralogie) der gebildeten Hydratphasen beeinflussen, etwa über den pH-Wert während der Abbindephase. Auch die Mineralogie der Hydratphasen kann den Verlauf der Entwässerung des Feuerbetons und damit dessen Aufheizverhalten beeinflussen.

Als Fortschritt gegenüber dem Stand der Technik sollte der Einfluss der Verflüssiger und der Einfluss der Poreneigenschaften auf das Entwässerungsverhalten der Feuerbetone in dem FuE-Vorhaben erstmals systematisch aufgeklärt werden.

Einfluss des Porengefüges auf die Zersetzung von Zementhydratphasen und damit auf das Trocknungsverhalten von Feuerbetonen

Die vorherrschende Meinung ist, dass das Porenwasser bereits bei 100 °C verdampft. Barakat et al. konnten allerdings mit NMR nachweisen, dass eine geringe Permeabilität, so wie sie für verflüssigte

dichte Feuerbetone typisch ist, zu Poreninnendrücken von bis zu 40 bar führt, wodurch die Siedetemperatur des Porenwassers auf rund 250 °C erhöht wird /BAR19, BAR20/. Eigene Forschungsergebnisse sind damit in Übereinstimmung /SIM20/.

Das chemisch gebundene H₂O wird beim Aufheizen erst bei höheren Temperaturen bei der Dehydratation der Zementhydratphasen freigesetzt, entweder als Dampf oder als Wasser, je nach Porendruck. Der thermische Zerfall der Zementhydratphasen ist nach Scrivener /SCR98/ bis 300 °C (C₃AH₆) weitgehend abgeschlossen, wobei allerdings die Dehydratationstemperaturen an pulverisierten reinen Zementhydratphasen (abgebundene Zementleime) mittels DTA untersucht wurden. Die Ergebnisse basieren also nicht auf in-situ Messungen (Messungen der Zersetzung der Hydratphasen in realen Feuerbetonen) und berücksichtigen somit nicht die druckabhängige Stabilisierung von Zementhydratphasen. In realen Feuerbetongefügen werden durch den hohen Wasserdampfdruck in der Porenstruktur die Zementhydratphasen zu höheren Temperaturen stabilisiert. Eigene Vorarbeiten legen nahe, dass der Wasserdampfdruck in der Tat einen erheblichen Einfluss auf die die thermische Stabilität der Zementhydratphasen hat /SIM19, STE19/.

Einen Einfluss auf das Porengefüge und damit auf das Trocknungs-/Aufheizverhalten von Feuerbetonen erreicht man auch durch den Einsatz von Polypropylen (PP)-Fasern, die bei Temperaturen von ca. 160 °C schmelzen, dabei Porenkanäle hinterlassen und so die Permeabilität für Wasserdampf im Feuerbeton erhöhen. Damit besteht die Möglichkeit, dass sie die Druckstabilisierung der Zementhydratphasen verhindern und somit indirekt auch das Zersetzungsverhalten der Zementhydratphasen positiv verändern /SAL07/.

Fortschritt im FuE-Vorhaben gegenüber dem Stand der Technik

Während in früheren Arbeiten die Beeinflussung der Kristallmorphologie der Hydratphasen zur Verbesserung des Trocknungs-/Aufheizverhaltens allein im Vordergrund stand, wurde nun das Aufheizverhalten zusätzlich mit der aus dem Porengefüge abzuleitenden Porosität und Permeabilität korreliert. Der im Wesentlichen neue Lösungsansatz beruhte darauf, dass nicht nur die Zersetzung der Zementhydratphasen (beeinflusst durch die verwendeten Verflüssiger) an sich als kritischer Parameter für das Trocknungs-/Aufheizverhalten definiert wurde, sondern auch die <u>Druckverhältnisse im Porengefüge</u>. Somit wurde nun besonderes Augenmerk gelegt auf den Einfluss des sich mit der Temperatur dynamisch ändernden Porengefüges auf den Druckaufbau innerhalb des Feuerbetons beim Aufheizen, die Funktionsweise der PP-Fasern hierbei und letztlich der Einfluss des Porengefüges auf die Zersetzungstemperaturen der Zementhydratphasen.

Methoden zur Untersuchung der Zersetzung von Zementhydratphasen in Feuerbetonen

Zur in situ Untersuchung der Dehydratationstemperaturen der Zementhydratphasen in realen Feuerbetonen liegen neue analytische Methoden vor /SIM20/. Als thermoanalytisches Verfahren zur Untersuchung von Reaktionen in Feuerbetonen hat sich bei FGF (FE 1) die **Methode des Monotonen**

Aufheizens (Method of Monotonic Heating, MMH) bewährt. Das Prinzip besteht in der kontinuierlichen Messung der Temperaturdifferenz zwischen Mitte und Rand in einem zylindrischen Prüfkörper, der mit konstanter Rate über seine Mantelfläche aufgeheizt wird. Aus den während der Aufheizung aufgezeichneten Temperaturen lassen sich endotherme und exotherme Prozesse bestimmen /LIT82, PÖT06, SIM07/. Durch den endothermen Effekt des Siedens von Porenwasser lässt anhand der Antoine-Gleichung (Druckabhängigkeit der Koexistenz von Wasser und Wasserdampf, siehe Bild 4) der Wasserdampf-Partialdruck in den Poren des Feuerbetons abschätzen. Der endotherme Effekt der thermischen Zersetzung einer Zementhydratphase zeigt deren Zersetzungstemperatur an. Ein Vorteil des Verfahrens ist, dass reale Gefüge in großen Prüfkörpern (Zylinder, D=46 mm, H=100 mm) untersucht werden. Die Ergebnisse können also auf die betriebliche Praxis übertragen werden /SIM19/. Begleitende thermogravimetrische Untersuchungen ermöglichen die Korrelation der Entwässerungsreaktionen mit dem Gewichtsverlust durch Austreten des entstehenden Wasserdampfes.

Radar/Hochfrequenzverfahren werden zur Detektion der Feuchteverteilung in Baumauerwerken verwendet /MAI00/. Untersuchungen der Hochschule Koblenz (FE 2) haben gezeigt, dass eine hinreichende Durchdringung von Feuerbetonen erreicht wird und die Feuchteverteilung (flüssiges Wasser) während des Trocknens/Aufheizens untersucht werden kann /STE19/. Dabei können Phasenverschiebungen der reflektierten Wellen detektiert werden, die auf die Zersetzung der Zementhydratphasen hindeuten. Dies bedeutet, dass die Zersetzung der Zementhydratphasen während des Aufheizens unmittelbar nachweisbar ist. Die Methode ist kombiniert mit einer Thermogravimetrie, so dass dem Radarsignal ein durch das Verdampfen von Wasser induzierter Gewichtsverlust zugeordnet werden kann. Während der Zersetzung der Zementhydratphasen wird H₂O freigesetzt, welches in Abhängigkeit vom Porendruck als Wasser oder Dampf vorliegen kann. Die Änderung der Menge von flüssig vorliegendem Wasser kann von Radar erfasst werden, Wasserdampf ist für Radar unsichtbar. Da MMH-Messungen zeigen, bei welcher Temperatur H₂O durch Zersetzung von Hydratphasen freigesetzt wird, kann mit Hilfe der Radar-Ergebnisse erkannt werden, ob dieses als Wasser oder als Wasserdampf freigesetzt wird. Daraus lässt sich auf die Druckverhältnisse in der Porenstruktur und somit auf eine Druckstabilisierung der Zementhydratphasen schließen.

Als neue Methode zur in situ Untersuchung der Zersetzungsgeschwindigkeit von Zementhydratphasen wurde die Laserflash-Methode (Laser Flash Analysis, LFA) verifiziert. Hierbei handelt es sich um die Weiterentwicklung einer genormten Methode zur Messung der Temperaturleitfähigkeit. Über Änderungen der Temperaturleitfähigkeit können indirekt Veränderungen im Gefüge detektiert werden. Bisher wurden mittels LFA Veränderungen im Gefüge von technischen Keramiken oder Porzellan untersucht /DAN03, DAN09, KLI07, KLI08, RAE98, RAE00/. Die bei der FGF (FE 1) betriebene LFA ist eine Weiterentwicklung konventioneller LFA-Anlagen. Ihr Vorteil ist, dass Proben bis zu einer Größe von D=45 mm und H=11 mm untersucht werden können (bisher max. D=25 mm, H=2 mm), was die Anwendung von LFA an grobkeramischen Feuerbetonen überhaupt erst sinnvoll ermöglicht.

Trocknungs- und Aufheizverhalten von Feuerbetonen

Um das Zersetzungsverhalten von Hydratphasen bei prograder Temperaturbeaufschlagung zu verstehen ist es wichtig, die ablaufenden Reaktionen während der ersten Aufheizung eines Feuerbetons zu kennen. Eine vereinfachte Übersicht dazu gibt Bild 3 /WAN16b/. Die im Temperaturintervall von 100 bis 650 °C stattfindenden Phasenübergänge in Korund-basierten, Calciumaluminat-gebundenen Feuerbetonen und den entsprechenden Matrixversätzen umfassen grundsätzlich auch siedendes Porenwasser und die thermische Zersetzung weiterer, in Bild 3 nicht dargestellter Hydratphasen. Jedoch stehen bis 650 °C alle Phasenübergänge in diesen Erzeugnissen im Zusammenhang mit der Freisetzung von H₂O und sind insofern alle relevant zur Beschreibung ihres Entwässerungsverhaltens.

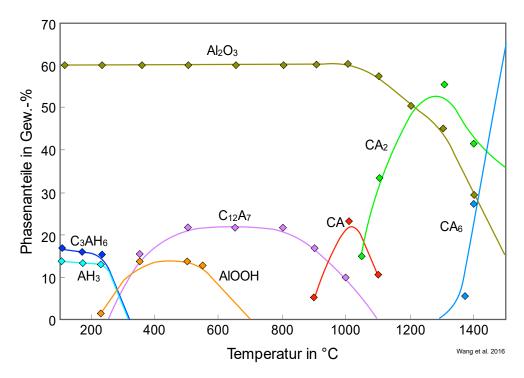


Bild 3: Stark vereinfachtes Schema der Phasenübergänge beim ersten Aufheizen eines zementgebundenen, Korund-basierten Feuerbetons /WAN16b/.

Porenwasser

In den Poren noch vorhandenes Wasser fängt während der ersten Aufheizung ab 100 °C an zu sieden, sofern von einem Gesamtdruck im Porengefüge von 1 bar ausgegangen wird. Bei geringer Permeabilität kann der entstehende Wasserdampf jedoch nicht in ausreichender Menge an die Oberfläche des Feuerbetons gelangen und der Gesamtdruck im Feuerbeton erhöht sich. Ein steigender Wasserdampfdruck erhöht jedoch die Siedetemperatur des Porenwassers entsprechend der Antoine-Gleichung (Bild 4). Unter hydrothermalen Bedingungen liegt bei entsprechendem Wasserdampfdruck Wasser mit einer Temperatur von über 100 °C vor.

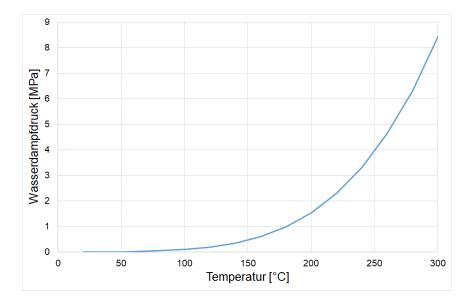


Bild 4: Wasserdampfdruck in Abhängigkeit von der Temperatur nach der Antoine-Gleichung mit Konstanten A=23,22, B=3841,22, C=-45 aus /LUZ15/.

Die Zugfestigkeit des Feuerbetons begrenzt den erreichbaren Maximaldruck im Porenraum, bei dem es im ungünstigsten Fall zur Explosion kommt. Bei einer für die untersuchten Korund-Feuerbetone realistischen Zugfestigkeit von rund 5 MPa würde das Porenwasser bei Temperaturen bis 230 °C sieden, bevor der dann vorliegende Wasserdampfpartialdruck bei Überschreitung der Zugfestigkeit zur Explosion führt. Bei diesen Temperaturen vorliegendes Wasser, und somit auch die entsprechenden Drucke, sind durchaus realistisch. So wurde flüssiges Wasser in LC-(Low Cement-)Feuerbetonen noch bei 250 °C mit NMR direkt nachgewiesen /BAR20/.

Chemisch gebundenes Wasser

Beim ersten Aufheizen der Feuerbetone zersetzen sich die Zementhydratphasen sukzessiv und das chemisch in ihnen gebundene Wasser wird schrittweise wieder freigesetzt. Die genauen Entwässerungstemperaturen der Zementhydratphasen bei Normaldruck sind abhängig von der Umgebungstemperatur während der Hydratation, wobei nach /SCR98/ die Entwässerung bis 300 °C (C₃AH₆) weitgehend abgeschlossen ist.

Die bei zunehmender Temperatur stattfindende Zersetzung der Zementhydratphasen wird im Allgemeinen über folgende Reaktionen beschrieben:

2CAH₁₀ +H
$$\rightarrow$$
 C₂AH₈ + AH₃ (Gel) + 10 H
3C₂AH₈ \rightarrow 2C₃AH₆ + AH₃ (Gibbsit) + 9H
4C₃AH₆ + 3AH₃ \rightarrow C₁₂A₇ + 33H
C₃AH₆ + AH₃ + A \rightarrow 3CA + 9H

In der Literatur finden sich zahlreiche Untersuchungen zur Ermittlung der Temperaturen, bei denen

sich Calciumaluminathydrate thermisch zersetzen. Überwiegend werden hier CAH₁₀, C₂AH₈ und C₃AH₆ betrachtet sowie die AH-Phasen (Aluminiumhydroxide), AH₃ (Gibbsit, monoklin) und AH (Böhmit, orthorhombisch). Weitere AH-Phasen sind jedoch bekannt (Bayerit = hexagonales AH₃, Nordstrandit = triklines AH₃). Ein typisches Ergebnis einer DTA-Messung zeigt Bild 5 nach Sharp /SCH90/. Die Kurve zeigt die DTA-Signale, die durch die thermische Zersetzung der Hydratphasen eines Zementleims bei seiner ersten Aufheizung erzeugt werden.

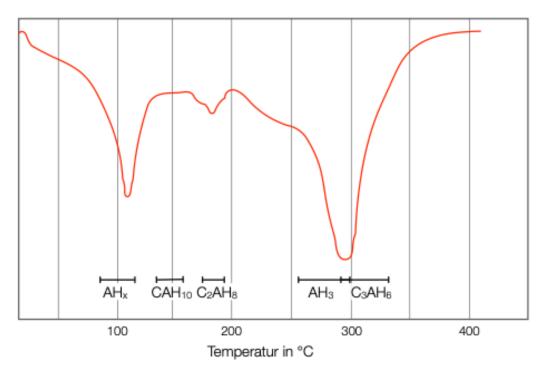


Bild 5: Typische DTA-Kurve eines hydratisierten Zementleims (CA14M, Almatis) /SHA90/.

Weitere Ergebnisse zur thermischen Zersetzung von Zementhydratphasen wurden von Cardoso veröffentlicht /CAR04/, die in Bild 6 zusammengefasst werden. Ukrainczyk et al., kommen zu vergleichbaren Zersetzungstemperaturen, die in Tabelle 2 aufgelistet sind /UKR07/. Hierbei ist jedoch zu bedenken, dass die Zersetzungstemperaturen an kleinen Proben mittels DTA und oft an Zementleimen ermittelt wurden. Hier wird erwartet, dass mit der in früheren Untersuchungen /SIM20/ sowie hier eingesetzten Methode des Monotonen Aufheizens (MMH), für die großformatige Proben verwendet werden (reale Feuerbetone, mit ihren Eigenschaften der Porosität und Permeabilität), realistischere Zersetzungstemperaturen ermittelt werden, da hier auch integral der Poreninnendruck Berücksichtigung findet, der beim Sieden des Wassers entsteht.

Dichte Feuerbetone weisen eine geringe Permeabilität auf, sodass der Siedepunkt des Wassers in Feuerbetonen auf bis zu 250 °C ansteigen kann /BAR19/, was einem Porendruck von rund 40 bar (4 MPa) entspricht. Die Bedingungen im Feuerbeton während des Aufheizens sind somit hydrothermal, was in den Arbeiten von Wöhrmeyer et al. bestätigt wird /WÖH07/. Unter hydrothermalen Bedingungen bildet sich AH (Böhmit) anstelle von AH₃ (Gibbsit), was die die vollständige Entwässerung der

Feuerbetone auf über 500 °C verschiebt /AUV13, WÖH07/. DTA-Versuche von Paloua zeigen hier eindeutig, dass Böhmit bei 220°C und 20 bar gebildet wird (Bild 7) /PAL16/. Eine hydrothermale Beeinflussung der Temperaturbeständigkeit anderer Zementhydratphasen ist bislang noch nicht beschrieben worden. Die Vermutung liegt nahe, dass wasserhaltige Zementhydratphasen zu höheren Temperaturen stabilisiert werden können.

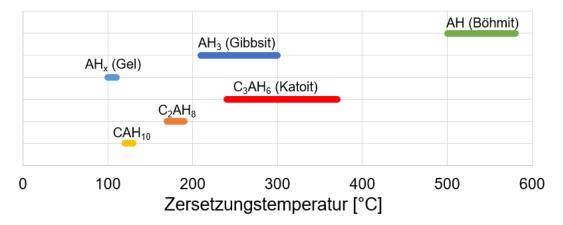


Bild 6: Zersetzungstemperaturen von CAH- und AH-Phasen /CAR04/.

Tabelle 2: Zusammenstellung von Zersetzungstemperaturen wichtiger Hydratphasen /UKR07/.

Reference	Year	Method	CAH ₁₀	C_2AH_8	C_3AH_6	AH ₃ -gel	Al(OH) ₃	C ₃ ACcH ₁₁
Schneider [7]	1959	DTA	~155 & ~285					
Ramachandran [8]	1969	DTA	~140-170	\sim 290				
Barnes and Baxter [9]	1978	DTG	~125		~330		\sim 290	
Day and Lewis [10]	1979	DTG				100-200	3 steps \sim 550	
Pope and Judd [11]	1980	DTA	~110-120		~320-350		~295–310	
George [12]	1983	_	~140	$\sim \! 170$	~300	~90	~280	
Midgley [13]	1984	DTA	\sim 150	\sim 230	~310		\sim 275	\sim 200
Bushnell-Watson and Sharp [14]	1985	DTA		~190-200		\sim 107-120		198
Das et al. [15]	1996	DTA	~175 °C &160–180	\sim 275 & 200–280	~320	~300		
Guirado et al. [16]	1998	DTG	\sim (37, 99 & 112)					
Schmitt et al. [17]	2000	DTG			200-400			
Fryda et al. [18]	2001	DTA	~150	$\sim \! 200$	~330 °C		\sim 290	
Cardoso et al. [19]	2004	_	120	170-195	240-370	100	210-300	

Des Weiteren ist wenig bekannt, wie sich die Morphologie der Zementhydratphasen auf das Zersetzungsverhalten auswirkt. Grundsätzlich hängt die chemische Reaktivität von Substanzen von deren spezifischen Oberfläche ab: Je größer die Oberfläche, desto reaktiver und weniger kinetisch gehemmt verlaufen Reaktionen. Kristalline Substanzen wie Zementhydratphasen werden mit zunehmender spezifischer Oberfläche instabiler, da eine kristalline Oberfläche grundsätzlich einen Abbruch der Idealstruktur darstellt, woraus eine hohe Oberflächenenergie resultiert. Dieser Zusammenhang ist zwar bekannt, wurde aber bislang nicht für Zementhydratphasen in der Literatur beschrieben und kann über das bisher angewendete Verfahren (DTA) nicht untersucht werden, da dieses pulverisierte Messproben erfordert.

2. Wissenschaftlich-technische und wirtschaftliche Problemstellung

2.1. Druckabhängigkeit der thermischen Zersetzung der Hydratphasen

Für die erwähnten Hydratphasen werden die in Bild 6 /CAR04/ und in Tabelle 2 angegebenen Temperaturen für ihre thermische Zersetzung angegeben. In diesen Zusammenfassungen wird jedoch der Einfluss des umgebenden Wasserdampfdrucks auf die thermische Stabilität der Hydratphasen nicht beachtet. Es ist zu bedenken, dass die gelisteten Daten an kleinen und/oder aufgemahlenen Proben mittels klassischer Thermoanalyse (DTA, DSC) ermittelt wurden und oft an Zementleimen. Da bei MMH (und Radar) großformatige Proben verwendet werden, d.h. reale Feuerbetone mit ihren Eigenschaften der Porosität und Permeabilität, kann sich in den Prüfkörpern dieser Prüfmethoden grundsätzlich ein erhöhter Wasserdampfdruck aufbauen, welcher die thermische Stabilität der Hydratphasen in den MMH-Prüfkörpern erhöhen kann. Bei der Zuordnung der MMH-Signale zu konkreten Zersetzungsreaktionen auf Basis der vorhandenen Daten ist das zu berücksichtigen. Der quantitative Effekt des Wasserdampfdruckes auf die Stabilität der verschiedenen Hydratphasen wurde untersucht, indem vergleichende MMH-Messungen an realen Feuerbetonen und zerkleinerten Feuerbetonen durchgeführt wurden, in denen sich kein Porendruck aufbauen kann.

Als ein Beispiel für den Einfluss des Wasserdampfdrucks auf die Stabilität von Hydratphasen ist die Bildung von AH (Böhmit) anstelle von AH₃ (Gibbsit) unter hydrothermalen Bedingungen zu nennen /AUV13, WÖH07/PAL16/ (Bild 7).

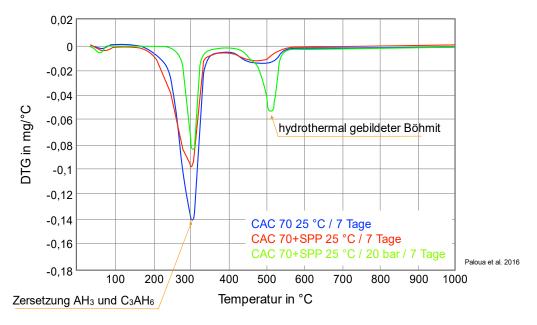


Bild 7: Einfluss einer hydrothermalen Behandlung (220 °C und 20 bar) auf das Entwässerungsverhalten von Hochtonerdezement Gorkal 70, Gorka (Polen) /PAL16/. Hydrothermale Bedingungen ermöglichen die Bildung von Böhmit, der bei ~510 °C entwässert. Die Peaks bei ~300 °C werden der Zersetzung von AH3 und C3AH6 zugeschrieben.

2.2. Einfluss der Kristallmorphologie auf die thermische Stabilität der Hydratphasen

Mineralogische Phasenumwandlungen bewegen den Phasenbestand in Richtung thermochemisches Gleichgewicht. Thermochemische Zustandsgrößen berücksichtigen jedoch nicht den zeitlichen Aspekt. Daher bestimmt die Reaktionskinetik die Geschwindigkeit, mit der Reaktionen ablaufen. Das gilt auch für die thermische Zersetzung von Zementhydratphasen, die mineralogisch betrachtet zunächst eine Abgabe des Kristallwassers bedeutet. Kinetisch kontrollierte Reaktionen verlaufen bei niedrigen Temperaturen in aller Regel langsam. Jedoch kann die Reaktionsgeschwindigkeit auch von der spezifischen Oberfläche beeinflusst werden, hier die spezifische Oberfläche der Zementhydratkristalle. Je größer die spezifische Oberfläche, desto schneller laufen Reaktionen ab. Hier wurde der Einfluss von verschiedenen Verflüssigern auf die Ausbildung der Hydrat-Kristalle (Größe und Habitus) und damit auf die spezifische Oberfläche der Zementhydratkristallite mit Hilfe hochauflösender Rasterelektronenmikroskopie untersucht. Zersetzen sich die Zementhydratphasen bedingt durch eine große spezifische Oberfläche bereits bei niedrigen Temperaturen, dann wird gleichzeitig auch Permeabilität für Wasserdampf erhöht, weil die Porosität ansteigt. So wird der Entstehung kritischer Porendrucke grundsätzlich entgegengewirkt.

Der verwendete Verflüssiger kann als oberflächenaktive Substanz die Morphologie der beim Abbinden wachsenden Hydratkristalle beeinflussen /SIM20/ und somit die spezifische Oberfläche der kristallinen Zementhydratphasen. Die morphologische Ausbildung der Kristalle (= geringe spezifische Oberfläche) kann auch Einfluss nehmen auf die Geschwindigkeit und Temperatur der Umwandlung metastabiler Hydratphasen (CAH₁₀, C₂AH₈) in die bei höherer Temperatur stabilen Hydratphasen C₃AH₆ und AH₃. Die Umwandlung metastabiler kristalliner Phasen beginnt an Störstellen des Kristallgitters, zu denen grundsätzlich auch die Kristalloberfläche gehört. Eine größere Kristalloberfläche, etwa infolge einer feinblättrigen morphologischen Ausbildung der Kristalle, erhöht daher, im Vergleich zu einer dicktafeligen Ausbildung, die Umwandlungsrate in die stabile Phase. Da diese Umwandlungen auch mit einer Abspaltung von Wasser verbunden sind, ist es vorteilhaft, wenn die Umwandlungsrate bei niedrigen Temperaturen bereits hoch ist.

Der verwendete Verflüssiger kann auch das chemische Milieu während der Abbindephase des jeweiligen Feuerbetons beeinflussen, z. B. den pH-Wert. Dies wiederum kann Einfluss haben auf die Paragenese der CAH-Phasen, die beim Abbinden entstehen. Verschiedene CAH-Phasen sind unterschiedlich thermisch stabil und somit beeinflusst die primär beim Abbinden gebildete Hydratphasenparagenese auch das Entwässerungsverhalten der Feuerbetons beim ersten Aufheizen.

2.3. Untersuchungsmethoden zur thermischen Zersetzung der Hydratphasen

Üblicherweise wird die Entwässerung von Feuerbetonen thermogravimetrisch untersucht. Über die Gewichtsänderung einer Feuerbetonprobe während der Aufheizung erhält man die Information, bei

welchen Temperaturen Wasserdampf entweicht. Allerdings gibt diese Methode für sich allein keine direkte Information über die Temperatur der Dehydration von Zementhydratphasen, weil das dabei entstehende H₂O (Wasserdampf oder je nach Porendruck auch Wasser) zunächst im Porengefüge verbleibt und nur allmählich entweicht. Zur in situ Untersuchung der Dehydratationstemperaturen der Zementhydratphasen im realen Feuerbeton wurden daher weitere analytische Methoden benötigt, die sensibel sind für die jeweiligen Enthalpie-Effekte der Dehydrationsreaktionen ist und somit unabhängig vom Entweichen des Wasserdampfes aus dem Feuerbetongefüge. Daher mussten großformatige Proben untersucht werden, die das grobkörnige Gefüge der Feuerbetone repräsentieren.

Als thermoanalytisches Verfahren zur Untersuchung von Reaktionen in Feuerbetonen wurde daher die Methode des Monotonen Aufheizens (Method of Monotonic Heating, MMH) der FGF (FE 1) angewendet. Das Prinzip des MMH-Verfahrens besteht in der kontinuierlichen Messung der Temperaturdifferenz zwischen Mitte und Rand in einem zylindrischen Prüfkörper, der in einem Ofen mit konstanter Rate aufgeheizt wird. Aus den während der Aufheizung aufgezeichneten Temperaturen lässt sich die Temperaturleitfähigkeit in Abhängigkeit von der Probentemperatur als kontinuierliche Kurve berechnen /LIT82, PÖT06/. Da die bei steigenden Temperaturen stattfindenden Veränderungen in der Bindephase von Feuerbetonen deren Temperaturleitfähigkeit beeinflussen (IGF 19855 N, /SIM20/), werden die Veränderungen im Verlauf der Temperaturleitfähigkeit mit hoher Nachweisempfindlichkeit erkennbar. Zusätzlich bewirken Reaktionen (exo- oder endotherme Phasenumwandlungen, Bildung von Schmelzphasen) peakförmige Ausschläge in der Temperaturleitfähigkeitskurve. Diese entstehen dadurch, dass Reaktionsenthalpien (endo- oder exotherm) den Anstieg der Temperatur in der Mitte des Prüfkörpers gegenüber dem Anstieg seiner Temperatur am Außenrand verzögern oder beschleunigen. Die Signalintensitäten spiegeln den Stoffumsatz halbquantitativ wider.

Ein wesentlicher Vorteil des MMH-Verfahrens ist, dass reale Gefüge (Porenstruktur, Korngrößenverteilung, Probengröße) untersucht werden, die Ergebnisse also auf die betriebliche Praxis übertragen werden können. Als Ergebnis von MMH-Messungen liegen zunächst die Temperaturen vor, bei denen Phasenumwandlungen stattfinden. Zur Interpretation der MMH-Signale hinsichtlich den zu Grunde liegenden Phasenumwandlungen sind Begleituntersuchungen erforderlich (Mikroskopie, Röntgenbeugung) /SIM15, SIM16/.

Als eine weitere Methode wurde das Radarverfahren zur Detektion der Feuchteverteilung in Feuerbetonen verwendet /MAI00/. Voruntersuchungen der Hochschule Koblenz (FE 2) in Zusammenarbeit mit dem Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik (FHR) haben gezeigt, dass mit Radarstrahlen im GHz- bis THz-Frequenzbereich eine hinreichende Durchdringung von Feuerbetonen erreicht wird und die Feuchteverteilung in größeren Probenvolumina untersucht werden kann.

Beim Impulsradar werden von einer kombinierten Sende- und Empfangsantenne die zu untersuchenden Bauteile mit Radarimpulsen beaufschlagt. Diese breiten sich in den Bauteilen aus, werden an

Inhomogenitäten im Inneren reflektiert und von der Empfangsantenne wieder detektiert. Die Ausbreitungsgeschwindigkeit und die Intensität der Reflexionen hängen von den dielektrischen Eigenschaften der untersuchten Bauteile ab. Radarsignale reagieren auf Änderungen der Dielektrizitätskonstante im Bauteil. Insbesondere Wasser, das eine sehr hohe Dielektrizitätszahl bei Radarfrequenzen (ϵ =81, zum Vergleich: Luft ϵ =1, Beton ϵ =7, PVC ϵ =3) aufweist, führt zu deutlicher Schwächung der reflektierten Radarsignale in bestimmten Frequenzbereichen und ist damit gut detektierbar. Wird durch Zersetzung der Zementhydratphasen Wasser in Feuerbetonen freigesetzt, erfolgt also eine Schwächung des reflektierten Radarsignals. Bereits vor der Zersetzung der Zementhydratphasen vorliegendes Porenwasser stört nicht, da sich die Schwächungen des reflektierten Radarsignales durch Porenwasser und durch bei der Zersetzung der Zementhydratphasen freigesetztes Wasser addieren und wieder voneinander subtrahiert werden können.

Ein Pilot-Messaufbau bestehend aus einem Vektoriellen Netzwerkanalysator (VNA) mit Arbeitsbereich 1 MHz bis 110 GHz an der FE 2 hat gezeigt, dass auch Phasenverschiebungen der reflektierten Radarwellen detektiert werden, die auf Veränderungen der Zementhydratphasen hindeuten. Dies bedeutet, dass die Zersetzung der Zementhydratphasen während des Aufheizens unmittelbar nachweisbar ist. Der methodische Ansatz, Radartechnik zur Untersuchung der Bildung und Zersetzung von Zementhydratphasen in hydraulisch abbindenden Feuerbetonen einzusetzen, ist neu und wurde bisher nur in /SIM20/ in der Literatur beschrieben. Dieser vielversprechende Ansatz sollte im FuE-Vorhaben weiterverfolgt werden. Im Gegensatz zur oben beschriebenen thermogravimetrischen Methode ist das Wasser unmittelbar nach der Freisetzung erkennbar; somit wird das komplexe Bild der Dehydratation von Feuerbetonbauteilen ergänzt.

3. Ziel und Umfang der Untersuchungen

CAC-gebundene Feuerbetone erfordern große Sorgfalt beim Aufheizen. Hierbei wird das nicht chemisch gebundene **Porenwasser** durch Verdunstung und Sieden verdampft. Dieser Prozess kann, in Abhängigkeit von dem ansteigenden Porendruck und dessen Einfluss auf die Siedetemperatur des Wassers, bei Temperaturen von bis zu ~250 °C stattfinden. Durch Zersetzung von Hydratphasen wird **chemisch gebundenes Wasser** im Temperaturbereich von etwa 130 °C bis ca. 550 °C als Wasser oder Dampf (je nach Porendruck) im Feuerbetongefüge freigesetzt. Die Freisetzung von Wasser kann durch schrittweise Umwandlung in wasserärmere Hydratphasen erfolgen oder durch die vollständige Freisetzung des Kristallwassers unter Verbleib einer wasserfreien Phase. Der im Inneren der Bauteile oder Zustellungen entstehende Wasserdampf muss über die offene Porosität an die Bauteiloberfläche entweichen, gesteuert von der Permeabilität.

Das FuE-Vorhaben verfolgte daher zwei Ziele, die zusammengenommen neues Wissen zu den Mechanismen des Trocknungsverhaltens von Feuerbetonen generieren. Hierbei wurden der <u>Einfluss der verwendeten Verflüssiger auf die Kristallisation der Zementhydratphasen</u> und die <u>dynamische Entwicklung des Porengefüges während des Aufheizens</u> berücksichtigt.

1. Ziel: Beeinflussung des Trocknungsverhaltens durch Verflüssiger – Wissen über den Einfluss von Verflüssigern auf die Zersetzung von Zementhydratphasen

Die verwendeten Verflüssiger können grundsätzlich die Kristallisation der beim Abbinden wachsenden Hydratphasen-Kristalle (Morphologie, Größe, Spezies) beeinflussen und somit auch die spezifische Oberfläche der Zementhydratphasen. Eine höhere Oberfläche führt zu einer höheren Reaktivität und somit zu einer thermischen Zersetzung bei einer niedrigeren Temperatur. Zudem besteht die Möglichkeit, dass die verwendeten Verflüssiger auch einen Einfluss nehmen auf die Spezies der beim Abbinden der Feuerbetone gebildeten Hydratphasen (Hydratphasen-Paragenese) und somit auch auf das Freisetzen von chemisch gebundenem Wasser beim ersten Aufheizen.

Zur Aufklärung des Einfluss der Verflüssiger auf die thermischen Zersetzung der Zementhydratphasen wurden die Ergebnisse der Untersuchungen mit MMH, Radar, FE-REM und Röntgenbeugungsanalyse (RBA) kombiniert, um den Einfluss gängiger Verflüssiger (Polycarboxylatether, Natriumpolyphosphat + Zitronensäure und Acrylat) auf die morphologische Ausbildung der Hydratphasen-Kristalle (FE-REM), die Art der Hydratphasen (RBA) und in Folge auf das Zersetzungsverhalten der Zementhydratphasen (MMH, TG, Radar) zu beschreiben. Die thermische Stabilität der Zementhydratphasen wird, wie eingangs erläutert, nicht nur von ihrer Kristallmorphologie beeinflusst, sondern auch vom Dampfdruck in den Poren. Dieser wiederum ist beeinflusst vom Porengefüge im Feuerbeton. Daher wurden Vergleichsmessungen durchgeführt, für die das Porengefüge der Feuerbetone durch Zerkleinerung eliminiert wurde. Die an diesen Proben erkannten Unterschiede in den gewonnenen Ergebnissen lassen sich dann auf den Einfluss der Verflüssiger zurückführen.

2. Ziel: Beeinflussung des Trocknungsverhaltens durch das Porengefüge – Wissen über den Einfluss des Porengefüges auf die Zersetzung von Zementhydratphasen

In früherer Forschung /SIM20/ konnte gezeigt werden, dass der Wasserdampfdruck im Porengefüge von Feuerbetonen die thermische Stabilität von Zementhydratphasen beeinflusst und ihr Zersetzungsverhalten verändert. Da das Porengefüge das Entweichen des Wasserdampfes bestimmt, beeinflusst es also auch indirekt die thermische Stabilität der Zementhydratphasen. Während der Aufheizung wird das Porengefüge zudem durch die Zersetzung der Zementhydratphasen vergrößert, da diese neue Porosität hinterlassen. Das 2. Ziel des FuE-Vorhabens war daher, den Einfluss des Porengefüges auf das Trocknungsverhalten von Feuerbetonen zu beschreiben. Dabei wird das Porengefüge als ein sich dynamisch im Temperaturprofil verändernder Parameter betrachtet.

Die Methoden MMH und Radar wurden zur Untersuchung der Zersetzung von Zementhydratphasen genutzt. Diese Methoden können aber keine Veränderungen des Porengefüges von Feuerbetonen messen. Dazu wurden die Porositäten temperaturabhängig gemessen und die Porengrößenverteilungen der Feuerbetone (Quecksilberdruckporosimetrie) temperaturabhängig dokumentiert. Die im Zuge der Zersetzung der Hydratphasen stattfindende Veränderung der Porengefüge wurde auch über die damit einhergehende Änderung der Temperaturleitfähigkeit untersucht. Hierzu wurde die Laser-Flash-Analyse (LFA) verwendet.

Abhängig vom eingesetzten Verflüssiger und der jeweils benötigten Menge an Anmachwasser unterscheiden sich die untersuchten Modell-Feuerbetone in ihrem Verdichtungsverhalten und damit in ihrer Porosität. Bei gleichem verwendetem Verflüssiger wurden unterschiedliche Porengefüge durch Variation des Zementgehalts und dem jeweils angepassten Wassergehalt der Modellfeuerbetone erzielt. Je höher der Zementanteil, desto mehr Zementhydratphasen können beim Abbinden gebildet werden. Als Arbeitshypothese wurde angenommen, dass durch ihre Zersetzung im Feuerbeton während des Aufheizens ein feines zusätzliches Porengefüge entsteht. Darüber hinaus wurde durch die Zugabe von Polypropylenfasern (PP-Fasern), die während des Aufheizens erst schmelzen und schließlich ausbrennen, zusätzliche Porosität erzeugt, die die Wasserdampfpermeabilität erhöht. Der Einsatz von PP-Fasern ist industrielle Praxis und der Effekt erwiesen. Hier sollte die Beeinflussung der Zersetzungskinetik der Zementhydratphasen durch die PP-Fasern (bzw. durch die durch diese geschaffene zusätzliche Porosität) quantifiziert werden.

Auf Basis der erzielten Ergebnisse (Ziele 1 und 2) sollen die Hersteller von Feuerbetonen in die Lage versetzt werden, innovative Feuerbetone anzubieten, die schneller und dabei schadenfrei aufgeheizt werden können.

4. Materialien und Analysenverfahren

4.1. Verwendete Ausgangsstoffe

Zementsuspensionen und Realbetone verwendet wurden. In den Tabelle 3 bis 6 sind die Herstellerspezifikationen angegeben, welche die Rohstoffe über spezifische Oberfläche, Korngröße, Korngrößenverteilung und chemische Analyse klassifizieren. Es wurden Tabulartonerde-Qualitäten (T60/64) von Almatis GmbH, Ludwigshafen, Deutschland verwendet (s. Tabelle 3 bis Tabelle 5). Als Zement wurde ein Calciumaluminatzement (Secar71) von Imerys Fused Minerals Murg GmbH, Deutschland verwendet (Tabelle 6). Als Anmachflüssigkeit wurde deionisiertes Wasser verwendet.

Tabelle 3: Reaktivtonerden klassifiziert durch spezifische Oberfläche, Korngröße, Korngrößenverteilung und chemische Analyse, Herstellerspezifikation.

		RG4000	CTC20
Eigenschaften / Methoden		typ.	typ.
Korngrößenverteilung		monomodal	monomodal
Spezifische Oberfläche / BET	m²/g	7,2	2,10
Korngröße / d ₅₀ -Cilas	μm	0,6	1,80
Chemische Analyse			
Al_2O_3	%	99,8	99,70
MgO	%	-	-
Na ₂ O	%	0,08	0,12
Fe ₂ O ₃	%	0,02	0,03
SiO ₂	%	0,03	0,03
CaO	%	0,03	0,02

Tabelle 4: Verwendete Tabular-Tonerden im Feinkornbereich, klassifiziert durch Korngröße, Korngrößenverteilung und chemische Analyse, Herstellerspezifikation.

		T60 0	-0,045	T60	0-0,2	T60 0	,2-0,6
Eigenschaften / Methoden		typ.	max.	typ.	max.	typ.	max.
Korngrößenverteilung	mm		0,045		0,20		0,60
Chemische Analyse							
Al_2O_3	%	99,10	-	99,50	-	99,50	-
MgO	%	-	-	-	-	-	-
Na ₂ O	%	-	0,60	-	0,40	-	0,40
Fe ₂ O ₃	%	-	0,30	_	0,02	-	0,02
SiO ₂	%	-	0,12	-	0,09	-	0,09

Tabelle 5: Verwendete Tabular-Tonerden im Grobkornbereich, klassifiziert durch Korngröße, Korngrößenverteilung und chemische Analyse, Herstellerspezifikation.

		T60 0	,5-1,0	T60 1	,0-3,0	T60 3	,0-6,0
Eigenschaften / Methoden		typ.	max.	typ.	max.	typ.	max.
Korngrößenverteilung	mm		1,00		3,00		6,00
Chemische Analyse							
AI_2O_3	%	99,50	-	99,5	-	99,5	
MgO	%	-	-	-	-		
Na ₂ O	%	-	0,40	-	0,40		0,40
Fe ₂ O ₃	%	-	0,20	-	0,02		0,02
SiO ₂	%	-	0,90	-	0,90		0,9

Tabelle 6: Verwendeter Calciumaluminatzement (CAC), klassifiziert durch Korngröße, Korngrößenverteilung und chemische Analyse, Herstellerspezifikation.

		Secar 71		
Eigenschaften / Methoden		typ.	Spezifikation	
Korngrößenverteilung	μm	8 - 63		
Chemische Analyse				
AI_2O_3	%	68,7 – 70,5	> 68,5	
MgO	%	< 0,5	-	
Na ₂ O	%	< 0,5	-	
Fe ₂ O ₃	%	0,10 - 0,3	< 0,4	
SiO ₂	%	0,2 - 0,6	< 0,8	
CaO	%	28,50 - 30,5	< 31,0	

Um die Kristallisation der Zementhydratphasen (Habitus, Größe, Spezies) während des Abbindeprozesses zu beeinflussen, wurden die Modell-Feuerbetone mit Verflüssigern bzw. Verflüssigerkombinationen variiert: Polycarboxylatether, Natriumpolyphosphat + Zitronensäure und Acrylat. Zur Erhöhung der Porosität wurden Polypropylenfasern eingebracht. In Tabelle 7 sind alle verwendeten Additive mit Produktnamen, Lieferant/Hersteller, Chemie und hier verwendetem Akronym aufgeführt:

Tabelle 7: Übersicht (Produktname, Lieferant/Hersteller, Chemie und Akronym) verwendeter Aditive.

Produktname	Lieferant/ Hersteller	Chemie	Akronym
BUDIT® 4H	Chemische Fabrik Budenheim KG	Natriumpolyphosphatglas	Р
Zitronensäure	Chemische Fabrik Budenheim KG	Zitronensäure	Z
KX2314	Zschimmer & Schwarz Chemie GmbH	Acrylat	А
Castament FS 60	BASF	Polycarboxylatether	PC
Cellotin PP6	Zschimmer & Schwarz Chemie GmbH	Polypropylenfasern	F

4.2. Untersuchungsreihen und Versatzvariationen

4.2.1. Zementsuspensionen

Die Kristallisation der Zementhydratphasen wird vom Gesamtsystem des Feuerbetons beeinflusst. Daher verläuft sie in reinen Zementemulsionen anders als im Feuerbeton. Damit die mögliche Beeinflussung der mineralogischen Zusammensetzung der gebildeten Zementhydratphasen durch Verflüssiger klarer erkennbar wird, unbeeinflusst durch Bestandteile komplex zusammengesetzter Feuerbetone, wurden Vorversuche an Zementsuspensionen durchgeführt. Deren Zusammensetzungen sind in Tabelle 8 angegeben. An diesen Zementsuspensionen wurden die Porengrößenverteilung und die mineralogische Zusammensetzung untersucht. Zur Probenvorbereitung wurden jeweils 100 g des mit Verflüssiger versetzten Zements Secar 71 in die doppelte Menge deionisiertes Wasser eingerührt und mit einem Ultra Torax-Rührer eine Minute homogenisiert. Die Mischung wurde anschließend in luftdicht verschlossenen Probenbeuteln bei 20 °C im Klimaschrank gelagert und nach 48 Stunden wurde überschüssiges Wasser abgegossen. Um zusätzlich zum Einfluss des Verflüssigers auch den Einfluss unterschiedlicher Trocknungstemperaturen auf die Hydratphasenbildung zu erkennen, wurde die verfestigte Zementsuspension in jeweils drei Teile gebrochen, die a) ohne vorherige Trocknung b) nach Trocknung für 24 h bei 50 °C oder c) nach Trocknung für 24 h bei 100 °C eingefroren und anschließend gefriergetrocknet wurden. Zur Vorbereitung der mineralogischen Untersuchung mittels Röntgenbeugung wurde das Probenmaterial mit einer Scheibenschwingmühle zerkleinert.

4.2.2. Modell-Feuerbetone

Zur Erforschung des Einflusses der Porosität auf die Zersetzung von Zementhydratphasen wurden drei zementgebundene, Al₂O₃-basierte Modell-Feuerbetone mit unterschiedlichem Gehalt an Calciumaluminatzement (CAC) (10 Ma.-%, 5 Ma.-%, 2 Ma.-% CAC) entwickelt.

Tabelle 8 Zusammensetzungen der Zementsuspensionen für die Vorversuche zur Beeinflussung von Zementhydratphasen durch den zugesetzten Verflüssiger. Für Details siehe Tabelle 7.

Mischung Nummer	Zement (g)	Wasser (g)	P (g)	Z (g)	(g)	PC (g)
1	100	200				
2	100	200	1,5			
3	100	200	1,5	0,2		
4	100	200			1,5	
5	100	200				0,6
6	100	200	15			
7	100	200	15	2		
8	100	200			15	
9	100	200				6

Ein frei fließender Feuerbeton ohne Verflüssiger mit einer maximalen Korngröße von 6 mm und mit 20 Ma.-% CAC wurde als Referenzversatz ausgewählt. Die Modell-Feuerbetone sind aufgrund ihres jeweiligen Zementgehalts gemäß DIN EN ISO 1927-1 als verflüssigerfreier "Regular Castable" (RC) bzw. verflüssigte "Medium Cement Castable" (MCC), "Low Cement Castable" (LCC) oder "Ultra Low Cement Castable" (ULCC) zu klassifizieren. Die Zusammensetzung der Feststoff-Komponenten aller Versätze ist in Tabelle 9 aufgelistet. Jeder der verflüssigten Modell-Feuerbetone wurde mit den drei verschiedenen Verflüssigern bzw. Verflüssiger-Kombinationen variiert, wobei die Menge an Verflüssiger und die Wasserzugabe zum Erreichen geeigneter Verarbeitungseigenschaften angepasst wurden.

Tabelle 10 gibt eine Übersicht über die Bezeichnungen der entwickelten Feuerbetone und die verwendeten Mengen an zugesetzten Additiven und Wasser.

Tabelle 9: Zusammensetzung der Feststoff-Komponenten der entwickelten Modell-Feuerbetone. Bezeichungen nach DIN EN1402: RC (Regular Castable, MCC (Medium Cement Castable), LCC (Low Cement Castable), ULCC (Ultra Low Cement Castable).

Grundversatz:	RC Ma%	MCC Ma%	LCC Ma%	ULCC Ma%	
Tonerde					
T60 3-6 mm	25	16	16	16	
T60 1-3mm	18	21	21	21	
T60 0,5-1mm	13	11	11	11	
T60 0-0,2mm	17	10	10	10	
T60 0-0,045 mm	7	9	9	9	
CTC20	-	7	10	11	
RG4000	-	5	7	9	
Zement					
Secar 71	20	10	5	2	

Tabelle 10: Übersicht zur Versatzentwicklung. Es sind die unterschiedlichen Additiv- und Wasserzugaben für die Versätze aufgeführt. Kurzbezeichnung der Additive: A (Acrylat), PC (Polycarboxylatether), P (Natriumpolyphosphat), Z (Zitronensäure), F (Polypropylen-Fasern). Für Details siehe Tabelle 7.

Additiv:	P	Z	A	PC	F	Wasser (deion.)		
	Ma%	Ma%	Ma%	Ma%	Ma%	Ma%		
ohne Fasern								
RC	-					9,0		
MCC-P+Z	0,15	0,02				6,5		
MCC-A			0,3			6,5		
MCC-PC				0,06		4,8		
LCC-P+Z	0,15	0,005				5,4		
LCC-A			0,15			5,2		
LCC-PC				0,06		5,4		
ULCC-P+Z	0,15	0,005				5,4		
ULCC-A			0,15			5,4		
ULCC-PC				0,055		5,4		
mit Fasern								
MCC-P+Z F	0,15	0,02			0,1	6,6		
MCC-A F			0,3		0,1	6,6		
MCC-PC F				0,06	0,1	4,9		
LCC-P+Z F	0,15	0,005			0,1	5,8		
LCC-A F			0,15		0,1	5,8		
LCC-PC F				0,06	0,1	5,2		
ULCC-P+Z F	0,15	0,005			0, 1	5,6		
ULCC-A F			0,15		0,1	5,6		
ULCC-PC F				0,055	0,1	5,6		

An diesen 19 Modell-Feuerbetonen wurden die Rheologie und das Abbindeverhalten während der 48stündigen Lagerung im Klimaschrank bei 20 °C und 95 % rel. Luftfeuchtigkeit untersucht. Nach dem Abbinden wurde die Zusammensetzung und Morphologie der Hydratphasen untersucht. Die Festigkeit und die offene Porosität wurden im getrockneten und gebrannten Zustand gemessen. Zudem wurden die Versätze für die Thermogravimetrie, MMH, LFA, sowie für Radar-Untersuchungen herangezogen, mit Ausnahme der faserfreien ULCC-Versätze wegen ihrer mangelnden Explosionsfestigkeit. An den Versätzen mit ausreichender Explosionsfestigkeit wurden zudem die Porengrößenverteilungen, Biegezugfestigkeiten, offene Porositäten und Mineralphasenbestand nach Vorbehandlung bei verschiedenen Temperaturstufen untersucht. An einer Auswahl der Versätze wurden zusätzlich Permeabilitätsmessungen nach thermischer Vorbehandlung durchgeführt.

Um die notwendige hohe Mischqualität zu erreichen, wurde ein Intensivmischer (Typ R02, EIRICH) eingesetzt. Auf Grund der unterschiedlichen Beeinflussung des Mischverhaltens durch die drei eingesetzten Verflüssiger (Polycarboxylatether, Acrylat und Natriumpolyphosphat + Zitronensäure) wurde für den RC-Versatz sowie für jeden Verflüssiger ein eigenes Mischregime entwickelt (Tabelle

11). Für alle Mischungen kam ein Sternwirbler bei gleicher Rotationsrichtung von Wirbler und Mischbehälter zum Einsatz.

Tabelle 11: Mischbedingungen in Abhängigkeit vom zugegebenen Verflüssiger. Die angegebene Drehzahl von 78 U/min entspricht der minimalen Rotationsgeschwindigkeit des Wirblers des verwendeten Intensivmischers.

Feuerbeton / Verflüssiger		Mische Wasse	en vor rzugabe	Mischen nach Wasserzugabe	
		Dauer	Drehzahl	Dauer	Drehzahl
		min	U/min	min	U/min
RC	ohne Verflüssiger	1	78	3	78
P+Z	Natriumpolyphosphat + Zitronensäure	1	78	6	78
Α	Acrylat	1	78	5	78
PC	Polycarboxylatether	1	78	3	450

Das Ausbreitmaß wurde vor der Prüfkörperherstellung unter Vibration gemessen. Für Untersuchungen zur Abbindekinetik durch Messung der elektrischen Leitfähigkeit und der Ultraschalllaufzeit wurden die entsprechenden Probenformen befüllt, für die pH-Wert-Untersuchungen wurden Einwegbecher mit der Masse befüllt.

Zur Herstellung der für die weiteren Untersuchungen benötigten Prüfkörper wurden die Feuerbetonmischungen (siehe Tabelle 9 und

Tabelle 10) in Formen der jeweils benötigten Formate abgegossen. Zum Abbinden lagerten die Feuerbetone bei konstanten klimatischen Bedingungen von 20 °C und 95 % relativer Luftfeuchtigkeit im Klimaschrank. Die Prüfkörper wurden nach 24 Stunden ausgeformt und verweilten anschließend weitere 24 Stunden im Klimaschrank.

Prüfkörper für die Untersuchungen der FGF (FE 1) umfassten zylindrische Prüfkörper (L = 100 mm, \emptyset = 46 mm) mit eingegossenen Thermoelementen für die MMH-Prüfungen, Zylinder (L = 120 mm, \emptyset = 50 mm) für MMH-Prüfungen an zerkleinertem Probematerial und thermogravimetrischen Analysen, sowie scheibenförmige Prüfkörper (h = 11 mm, \emptyset = 45 mm) für LFA-Messungen.

Auf Grundlage der Ergebnisse der MMH-Prüfungen (Kapitel 5.4) wurden für alle Feuerbetone individuelle Vorbehandlungstemperaturen festgelegt (Tabelle 12), um die Untersuchung der Permeabilität, der Porengrößenverteilung, der Morphologie und Mineralphasenbestand im hydratisierten Zustand sowie vor und nach dem Ablauf von Zersetzungsreaktionen der Hydratphasen zu ermöglichen.

Nach dem Abbinden im Klimaschrank wurden die Prüfkörper bis zu der vorgesehenen Vorbehandlungstemperatur ohne Haltezeiten erhitzt, um den sich hierbei einstellenden Materialzustand mit den MMH-Ergebnissen korrelieren zu können. Dazu wurden die Prüfkörper (Prismen im Format D sowie scheibenförmige Prüfkörper zur Permeabilitätsbestimmung) zur Temperaturbehandlung als Stapel in einen Ofen gesetzt. Die Temperaturentwicklung während des Aufheizens wurde im Zentrum des Stapels kontinuierlich durch ein mittig platziertes Thermoelement verfolgt. Unmittelbar nach Erreichen der Solltemperatur wurden die Prüfkörper aus dem Ofen entnommen, bei Umgebungstemperatur abgekühlt und anschließend vakuumgetrocknet, um so noch mögliche Restfeuchte zu entziehen und den Zustand nach der Temperaturbehandlung einzufrieren (Abbruchbrände).

Tabelle 12: Übersicht der Temperaturen, bei denen die Prüfkörper vorbehandelt wurden.

Modell-Feuerbeton	Vorbehandlungstemperaturen in °C						
RC	20		150	185	230	300	380
MCC-P+Z	20		130	180	250	300	380
MCC-P+Z F	20		130	180	250	300	380
MCC-A	20		130	180	250	300	360
MCC-A F	20		130	180	250	300	360
MCC-PC	20		130	180	250	300	350
MCC-PC F	20		130	180	250	300	350
LCC-P+Z			130	180	230	300	370
LCC-P+Z F			130	180	230	300	370
LCC-A			130	200	250	300	360
LCC-A F			130	200	250	300	360
LCC-PC			130	180	250	300	380
LCC-PC F			130	180	250	300	380
ULCC-P+Z F		110	130	200	250	300	
ULCC-A F		110	130	160	250	300	
ULCC-PC F		110	130	200	250	300	

Die Prüfkörper für die Untersuchungen and der HS Koblenz (FE 2) umfassten zylindrische Geometrie (\emptyset = 10 cm, h = 5 cm) zur Untersuchung im Radarversuchsstand sowie Prismen im Format "D" (160 x 40 x 40 mm) für die KBF-Prüfungen nach EN ISO 1927-5. Die KBF-Prüfungen erfolgten an jeweils mindestens 3 Prüfkörpern

- nach dem Abbinden,
- nach Trocknung f
 ür 24 Stunden bei 110 °C,
- nach Brennen (Brennkurve: Heizrate 2 K/min, Haltezeit: 5 Stunden bei 550 °C;
 Heizrate 5 K/min, Haltezeit: 2 Stunden bei 1000 °C, keine aktive Kühlung),
- nach thermischer Vorbehandlung bei jeweils 5 auf Grundlage der MMH-Ergebnisse zuvor festgelegten Prüftemperaturen (vergl. Tabelle 12) und anschließender Vakuumtrocknung.

Von den bei den KBF-Prüfungen halbierten Prismen wurden jeweils fünf Hälften zur Messung der offenen Porosität verwendet. Eine Prismenhälfte wurde jeweils mit einem Backenbrecher grob zerkleinert, um Bruchstücke mit Durchmessern < 15 mm zu erhalten, an denen die Porengrößenverteilung untersucht wurde. Zur Mineralphasenbestimmung mit Röntgenbeugungsanalyse wurde das vorzerkleinerte Material in einer Scheibenschwingmühle feinzerkleinert.

Zusätzlich wurden für die im Labor des Imerys Technology Center (Frankreich) durchgeführten Messungen der Permeabilität aus den RC- und LCC-Massen scheibenförmige Prüfkörper (Ø = 101,6 mm, h = 25,4 mm) in gemäß Vorgabe angefertigten Formen abgegossen und ebenfalls bei den zuvor festgelegten Prüftemperaturen (Tabelle 12) vorbehandelt, abgekühlt und vakuumgetrocknet. Die Prüfkörper wurden in Vakuumbeuteln versiegelt und zur Messung versendet.

4.3. Untersuchungsverfahren

Im Folgenden sind verwendeten Untersuchungsmethoden aufgeführt. Neu- bzw. weiterentwickelte Untersuchungsmethoden werden detailliert beschrieben.

4.3.1. Rheologie – zeitabhängiges Ausbreitmaß (HS Koblenz)

Die Messung des Ausbreitmaßes erfolgte in Anlehnung an DIN EN ISO 1927-4 nach einem bei der FE 2 entwickelten Verfahren /STE20/. Der Versuchsaufbau ist geeignet zur vergleichenden Untersuchung des Ausbreitverhaltens von Vibrationsbetonen oder der im Rahmen des Forschungsvorhabens verwendeten, wenig fließfähigen Feuerbetone und besteht aus Vibrationstisch (Modell VE10002, Fa. Knauer Engineering GmbH Industrieanlagen & Co. KG), Messwerterfassung, Signalverarbeitung, Testvorbereitung und Online-Frequenzsteuerung der Schwingeinheit. Die Erfassung der Messdaten sowie die aktive Steuerung der Frequenz werden durch die integrierte Software VibroControl realisiert. Die Entwicklung des Ausbreitmaßes wird über eine Bildverarbeitungsplattform mit integrierter, vertikal ausgerichtete Flächenkamera (Modell CA-DQP25X und Controller Modell CV-H1X, Keyence Corporation) verfolgt. Dabei wird, ausgelöst über eine SPS-Steuerung (SPS Controller Modellreihe LOGO! TDE, Siemens AG), alle 2 Sekunden ein Bild aufgenommen.

Ein auf dem Vibrationstisch mittig platzierter kegelstumpfförmiger Trichter (Füllhöhe 80 mm) wird mit Probenmaterial gefüllt und das Material für 30 s einvibriert. Nach Anheben des Trichters und gleichzeitigem Start des Vibrationstischs und der Bildaufnahme kann sich das eingefüllte Probenmaterial ungehindert radial ausbreiten. Das zeitabhängige Ausbreitmaß wird mittels Bildverarbeitungsplattform durch Pixelzählung ermittelt und nach erfolgter Kalibration in m² umgerechnet /STE20/.

Das so zeitabhängig gemessene Ausbreitmaß beginnt bei Feuerbetonen typischerweise mit einer raschen Zunahme. Dies weist auf ein Fließen mit hoher Geschwindigkeit hin, nicht ausschließlich ausgelöst durch die Vibration und das Eigengewicht des Feuerbetonkonus, sondern auch durch die unterschiedlichen Viskositäten der Feuerbetone. Ein flacher Anstieg des Ausbreitmaßes deutet auf eine hohe und ein steiler Anstieg auf eine niedrigere Viskosität hin. Im Allgemeinen folgt auf das zunächst rasche Ausbreiten des Feuerbetons eine durch einen flacher werdenden Kurvenverlauf gekennzeichnetes Abnehmen der Ausbreitgeschwindigkeit, bei wenig fließfähigen Feuerbetonen ist nach Ende der Vibration keine weitere Ausbreitung mehr festzustellen. Für vergleichende Untersu-

chungen des Ausbreitverhaltens verschiedener, nur wenig fließfähiger Feuerbetone im Rahmen dieses Forschungsvorhabens wurde die Ausbreitung des Probenmaterials jeweils für 60 Sekunden durch Vibration (Amplitude 0,5 mm, Frequenz 50 Hz) unterstützt und 90 Sekunden lang durch Bildaufnahmen im Abstand von 2 Sekunden dokumentiert. Als charakteristischer Wert zur Interpretation des Fließverhaltens wurde die maximale Ausbreitfläche bei Ende der Vibration bestimmt.

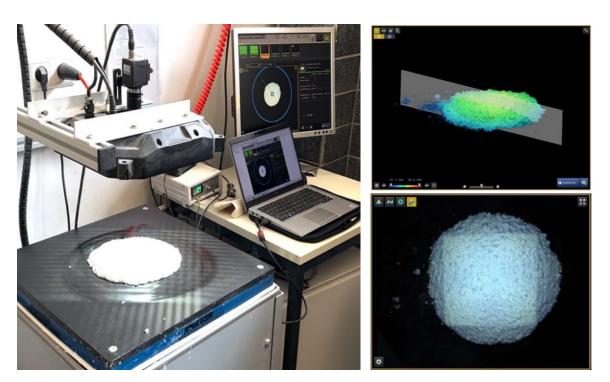


Bild 8: Versuchsaufbau zur Messung des zeitabhängigen Ausbreitmaßes nach /STE20/. Vibrationstisch und integrierter Flächenkamera (links). Durch Kalibrierung des Versuchstandes können auf Grundlage der erhaltenen Bilder (rechts) über eine angeschlossene Bildverarbeitungsplattform die Ausbreitfläche in m² in Abhängigkeit von der Zeit nach Ziehen des Konus berechnet werden.

4.3.2. Abbindekinetik – Ultraschalllaufzeit, Elektrische Leifähigkeit und pH-Wert (HS Koblenz)

Als Maß für die Abbindekinetik der Mischungsansätze wurden die Entwicklung der elektrischen Leitfähigkeit und der Schallgeschwindigkeit während des Abbindens bei 20 ° C und 95 % relativer Luftfeuchte bestimmt. Zusätzlich wurde bei einer Auswahl faserfreier Versätze auch die pH-Wert-Entwicklung dokumentiert. Gestartet wurden die Messungen 10-15 min nach Mischende und 48 h nach Mischende wieder gestoppt.

4.3.3. Explosionsneigung (HS Koblenz)

Vor der Temperaturbehandlung im Rahmen der weiteren Untersuchungen wurde die Explosionsfestigkeit der Materialien untersucht. Dazu wurden aus den entwickelten Modell-Feuerbetonen zylindrische Prüfkörper (L = 120 mm, $\emptyset = 50 \text{ mm}$) gegossen, und nach einer Abbindezeit von 48 Stunden im

Klimaschrank bei 20 °C und 95 % relativer Luftfeuchtigkeit auf 600 °C erhitzt. Zum Schutz des Brennofens vor Beschädigungen durch Bruchstücke im Fall einer Explosion des Probenmaterials wurden die Prüfkörper in einem geschlossenen Behälter aus Lochblech in den Ofen gesetzt. Beim Explosionstest wurde mit 10 K/Min schneller aufgeheizt als beim MMH-Versuch, sodass bei bestandenem Test davon auszugehen ist, dass das Material auch die Aufheizung im MMH-Test ohne Beschädigung übersteht.

4.3.4. Kaltbiegefestigkeit (HS Koblenz)

Die Kaltbiegefestigkeit (KBF) kennzeichnet die Biegezugfestigkeit sowie die Eignung des Materials für den Einsatz in der Praxis. Sie ist eine gute Größe, um die Festigkeit des Bindesystems des Feuerfestmaterials qualitativ zu vergleichen, sofern die Gefüge (Korngrößenverteilung) ansonsten gleich aufgebaut sind. Die KBF wurde an bei 110 °C getrockneten sowie an nach der Trocknung bei 1000 °C mit einer Haltezeit von zwei Stunden gebrannten Prüfkörpern (Prismen im Format D) gemäß EN ISO 1927-6 gemessen. Ferner wurden KBF-Prüfungen an den Feuerbetonen durchgeführt, nachdem sie bei den in Tabelle 12 genannten Temperaturstufen getempert wurden.

4.3.5. Offene Porosität (HS Koblenz)

Die offene Porosität (OP) ist das Volumen der offenen Poren im Material, in welche eine Flüssigkeit eindringen kann, ausgedrückt als prozentualer Anteil des Gesamtvolumens der Feuerfestprobe. Diese Eigenschaft ist allgemein wichtig, wenn das Material in Kontakt mit Schmelze oder Schlacke kommt. Eine niedrige OP verhindert das Eindringen/Infiltrieren von geschmolzenem Material in das Feuerfestmaterial und steigert deren Widerstandfähigkeit gegen Korrosion.

Ferner gibt die offene Porosität Hinweise auf die Permeabilität. Eine hohe offene Porosität deutet auf eine hohe Permeabilität hin. Diese erleichtert die Entwässerung der Feuerbetone während der ersten Aufheizung, da der während der Trocknung und bei der thermischen Zersetzung von Hydratphasen entstehende Wasserdampf schnell an die Probenoberfläche transportiert und an die Umgebung freigesetzt werden kann.

Die Messung der OP wurde über den Auftrieb des Prüfkörpers in Wasser an 110 ° C getrockneten und an bei 1000 °C gebrannten Feuerbetonen, sowie an bei den in Tabelle 12 aufgeführten Temperaturstufen getemperten Feuerbetonen in Anlehnung an die EN ISO 1927-6 durchgeführt.

4.3.6. Porengrößenverteilung (HS Koblenz)

Die Porengrößenverteilungen (PGV) wurde mittels Quecksilber-Druckporosimetrie nach DIN 66133 ermittelt. Ebenso wie die offene Porosität ermöglicht die Porengrößenverteilung Rückschlüsse auf die Permeabilität der Probe. Mit geringer werdendem mittlerem Porendurchmesser erhöht sich der Diffu-

sionswiderstand, den der bei der thermischen Zersetzung von Hydratphasen freiwerdende Wasserdampf überwinden muss, um an die Prüfkörperoberfläche zu gelangen. Dadurch vergrößert sich die Gefahr der Entstehung eines kritischen Poreninnendrucks.

Die Porengrößenverteilungen wurden nach dem Abbinden der Feuerbetone im Klimaschrank, sowie nach Vorbehandlung bei den in Tabelle 12 genannten Temperaturstufen untersucht.

4.3.7. Permeabilitätsmessungen (Fa. Imerys, Mitglied im projektbegleitenden Ausschuss)

Die Permeabilitätsmessungen wurden im Labor der Imerys Technology Center in Frankreich durchgeführt. Der verwendete VacuPerm-Messaufbau basiert auf einer Entwicklung der University of Missouri-Rolla (USA) und ist geeignet, Permeabilitäten auch von dichten Feuerbetonen nach Trocknung oder thermischer Vorbehandlung zu messen. Bei der VacuPerm-Methode wird unter dem Prüfkörper ein Vakuum erzeugt. Durch die den Prüfkörper durchströmende Luft wird allmählich wieder der Umgebungsdruck erreicht. Die Zeit bis zum Druckausgleich ist eine Funktion der Permeabilität des untersuchten Materials. Zeit- und Druckmessung werden verwendet um die Permeabilität K gemäß der Formeln (1) und (2) zu errechnen.

$$K = \frac{\frac{1000 * M * L}{A} * Q}{\Lambda P} \tag{1}$$

$$\frac{Q}{\Delta P} = \frac{\frac{1}{t} * V_c}{P_U} * ln \left(\frac{P_U - P_{VK}^0}{P_U - P_{VK}} \right)$$
 (2)

Hierbei sind:

K = Permeabilität

 $M = Viskosität des Fluids, hier <math>M_{Luft} = 1,83 \cdot 10^{-2} \text{ cP}$

 $L = H\ddot{o}he der Prüfkörpers (cm)$

A = Stirnfläche des Prüfkörpers in (cm²)

Q = Volumenstrom (cm³/s)

 ΔP = Druckdifferenz zwischen Vakuumkammer und Umgebung (atm)

t = Zeit(s)

 V_c = Volumen der Vakuumkammer (cm³)

 P_U = Umgebungsdruck (atm)

 P_{VK}^0 = Druck in der Vakuumkammer zum Zeitpunkt 0 (atm)

 $P_{VK} = Druck \in derVakuumkammerzumZeitpunkt t (atm)$

Die absoluten Messwerte sind mit Messergebnissen, die mit anderen Messmethoden erzielt wurden, nicht direkt vergleichbar, erlauben aber einen einfachen Vergleich mehrerer Materialien /WÖH15/.

4.3.8. Röntgendiffraktometrie (HS Koblenz)

Die Mineralphasen der gefriergetrockneten Proben wurden mittels Röntgenbeugung am Analysege-

rät Philips type X-PERT PRO gemessen. Die nach dem Abbinden bzw. nach der thermischen Vorbehandlung vakuumgetrockneten Feuerbetone wurden hierzu zunächst in einem Backenbrecher vorzerkleinert und anschließend in einer Scheibenschwingmühle gemahlen. Nach einer Mahldauer von 3 min bei 1000 U/min verbleibendes Material > 63 µm wurde abgesiebt.

4.3.9. Rasterelektronenmikroskopie (HS Koblenz)

Zur Untersuchung der Morphologie (Tracht und Habitus) der Zementhydratphasen wurde das JEOL JSM 7200F eingesetzt. Als Elektronenstrahlquelle dient ein W-Zr-O Shottky-Feldemitter, der durch seine gute Fokussierbarkeit eine Auflösung von gemittelt 1,5 nm ermöglicht. Die Anregungsspannung wurde mit 3 bis 5 KV bewusst niedrig gewählt, um den thermischen Einfluss auf die Zementhydratphasen gering zu halten. Ein degenerativer Einfluss auf die Zementhydratphasen konnte im Rahmen der hier durchgeführten Untersuchungen nicht festgestellt werden.

Die Untersuchungen erfolgten an gefriergetrockneten Materialproben, damit konnte der Erhalt der zu untersuchenden CA-Zement Hydratphasen gewährleistet werden. Die Materialproben wurden mit 6 nm Iridium bedampft, um einerseits eine gute Elektronenableitung von der Oberfläche zu gewährleisten, andererseits erzeugt Iridium keine Artefakte an der Probenoberfläche, wie beispielsweise Gold, die bei hohen Vergrößerungen die Interpretierfähigkeit der Ergebnisse einschränken.

4.3.10. Aufheizverhalten – Methode des Monotonen Aufheizens MMH (FGF)

Als thermoanalytisches Verfahren zur Untersuchung der thermischen Zersetzung von Zementhydratphasen in Feuerbetonen wurde die Methode des Monotonen Aufheizens (Method of Monotonic Heating, MMH) eingesetzt. Das Prinzip des MMH-Verfahrens besteht in der kontinuierlichen Messung der Temperaturen in der Mitte und am Rand eines zylindrischen Prüfkörpers, während er in einem Ofen mit konstanter Rate über seine Mantelfläche aufgeheizt wird. Aus der Temperaturdifferenz T_{Rand}-T_{Mitte} und der Aufheizrate in der Probenmitte lässt sich die effektive Temperaturleitfähigkeit in Abhängigkeit von der Probentemperatur als kontinuierliche Kurve ("MMH-Kurve") berechnen /LIT82, PÖT06/. Die bei steigenden Temperaturen stattfindende Zersetzung der Zementhydratphasen ist mit einem endothermen Energieumsatz verbunden, der den Anstieg der Probentemperatur verzögert. Die Zersetzungsreaktionen verursachen peakförmige Signale in der MMH-Kurve mit einem Minimum bei der Temperatur, bei der die Reaktion beendet ist. Mit dem Absieden des letzten Porenwassers erfolgt zudem als Signal ein stufenförmiger Anstieg der effektiven Temperaturleitfähigkeit in der MMH-Kurve, weil mit der Beendigung des Siedens auch dessen endothermer Effekt beendet ist und sich der Prüfkörpers anschließend rasch erwärmt, d. h. die Aufheizrate in der Mitte des Prüfkörpers steigt sprunghaft an. Die Signalintensitäten spiegeln den Stoffumsatz halbquantitativ wider.

Ein wesentlicher Vorteil des MMH-Verfahrens ist, dass die verwendeten zylindrischen Proben mit einer Größe von D=46 mm und H=100 mm das reale Gefüge der Feuerbetone repräsentieren und es

aufgrund der Größe der Proben auch zu einem Anstieg des Wasserdampf-Porendrucks kommen kann. Die Ergebnisse sind daher auf die betriebliche Praxis übertragbar.

Als Ergebnis der MMH-Messungen liegen zunächst die Temperaturen vor, bei denen Signale in den MMH-Kurven Phasenumwandlungen anzeigen. Zur Identifizierung unbekannter Signale (Phasenumwandlungen) werden grundsätzlich Begleituntersuchungen benötigt /SIM15, SIM16/. In Bezug auf die thermische Zersetzung der Zementhydratphasen sind hier Methoden wie Mikroskopie oder Röntgenbeugung grundsätzlich geeignet. Allerdings besteht hier das Problem, dass die Zersetzungsreaktionen vom Wasserdampf-Porendruck beeinflusst werden. Mikroskopie und Röntgenbeugung unter hydrothermalen Bedingungen wären somit erforderlich, stehen jedoch bisher nicht zur Verfügung. Somit fehlt bisher eine geeignete Untersuchungsmethode zur direkten Korrelation der MMH-Signale mit konkreten Phasenübergängen. Auch herkömmliche Verfahren zur Thermoanalyse können nur an kleinen Proben durchgeführt werden und nicht unter hydrothermalen Bedingungen. Ferner besteht bei Analysemethoden, die an abgekühlten Proben durchgeführt werden (wie RBA), das Problem, dass sich außer den Temperaturen auch die Porendrucke vermindern, so dass Rückreaktionen nicht auszuschließen sind. Somit ergeben Analysemethoden, die an abgekühlten Proben durchgeführt werden, nicht den Phasenbestand, der bei erhöhten Temperaturen und Drucken (MMH-Signal) vorlag. Auch die energiereiche Feinzerkleinerung zur Vorbereitung von RBA-Untersuchungen birgt die Gefahr der Beeinflussung des vorliegenden Bestandes an empfindlichen, teils metastabilen Hydratphasen. Die Zuordnung der MMH-Signale erfolgt somit zwar unter Zuhilfenahme von RBA, aber auch über den Abgleich mit Literaturangaben zur thermischen Stabilität von Zementhydratphasen sowie einer kritischen Plausibilitätskontrolle.

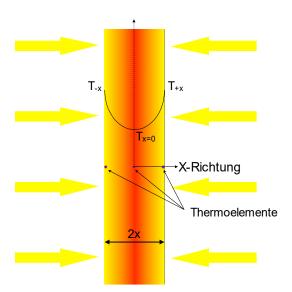


Bild 9: Schematische Darstellung des thermischen Gradienten im MMH-Prüfkörper während der Prüfung.

Geeignete Aufheizraten zur Untersuchung der Kinetik der Hydratphasenzersetzung

Die Aufheizrate kann Einfluss auf die Phasenentwicklung während der MMH-Messung ausüben, weil sie Einfluss hat auf die entstehenden Porendrucke und somit auf die thermische Stabilität der Zementhydratphasen. Mit einer schnellen Aufheizrate stellt sich zudem eine große Temperaturdifferenz T_{Rand} - T_{Mitte} im Prüfkörper ein. Dies erschwert die Definition der Temperatur, bei der beobachtete Phasenumwandlungen stattfinden. Zudem können schnelle Aufheizraten dazu führen, dass kinetisch kontrollierte Reaktionen erst nach einer mehr oder weniger ausgeprägten "Überhitzung" ablaufen, dafür dann aber umso schneller. Dann erhöht sich die Intensität der Signale stattfindender Reaktionen, da viel Energie pro Zeit umgesetzt wird. Die mit MMH gemessene Umwandlungstemperatur einer Phase kann bei einer schnellen Aufheizrate somit höher sein als in einer betrieblichen Anwendung, wo aufgrund der Bauteilgrößen und Wandstärken deutlich langsamere Aufheizraten eingehalten werden. Ist die gewählte MMH-Aufheizrate sehr langsam, kann der Energieumsatz pro Zeit bei kinetisch kontrollierten Reaktionen sehr gering sein, was die Nachweisempfindlichkeit entsprechend verringert. Außerdem erhöht sich der relative Messfehler in der ermittelten effektiven TLF, weil die Temperaturdifferenz bei einer niedrigen Aufheizrate sehr klein wird in Bezug zum absoluten Fehler der Temperaturmessungen.

Die Messungen im Forschungsvorhaben wurden standardmäßig mit einer Aufheizrate von 250 K/h durchgeführt. Mit dieser stellt sich im Prüfkörper eine geeignete Temperaturdifferenz ein und die thermische Zersetzung der Zementhydratphasen verursacht gut erkennbare Signale in den MMH-Kurven. Zudem wurden am RC-Modell-Feuerbeton auch Messungen mit einer Aufheizrate von 600 K/h durchgeführt, um den Einfluss der Aufheizrate auf die MMH-Signale der Dehydratationstemperaturen in den Feuerbetonproben festzustellen und über den Vergleich mit den Ergebnissen bei normaler Aufheizrate die Reaktionen zu erkennen, die kinetisch kontrolliert ablaufen.

Prüfkörper für MMH

Als Prüfkörper wurden gegossene Zylinder (L=100 mm / \emptyset =46 mm) verwendet. Die zur Messung notwendigen Thermoelemente (Typ-S, \emptyset =0,3 mm) wurden über Halterungen in der Gießform in exakter und reproduzierbarer Form in die Prüfkörper eingebracht.

4.3.11. Thermogravimetrie TG (FGF)

Parallel zu den MMH-Messungen wurden thermogravimetrische Messungen durchgeführt, in denen die durch die Abgabe von Wasserdampf verursachte Gewichtsänderung der Prüfkörper (Zylinder, D=50 mm, H=100 mm) in Abhängigkeit von der Temperatur aufgezeichnet wird. Die Prüfkörper wurden mit der gleichen Aufheizrate aufgeheizt wie bei den MMH-Messungen (250 K/h). Der Prüfkörper befindet sich während der Messung auf einem Trägersystem, das über eine Durchführung durch den

Ofenboden auf einer elektronischen Waage steht. Das Thermoelement zur Aufzeichnung der Prüfkörpertemperatur befindet sich in der Zylinderachse des Prüfkörpers auf dem Trägersystem. Eine Software zeichnet synchron das aktuelle Gewicht und die Temperatur auf.

Die Gewichtsänderung der Prüfkörper wurde als zweite Y-Achse über der Temperatur in die MMH-Diagramme eingetragen (MMH-TG-Diagramme), wodurch sich der Zusammenhang zwischen den MMH-Signalen (Phasenübergänge im Zuge der Entwässerung) und der Freisetzung von Wasserdampf erkennen lässt. Dabei ist zu berücksichtigen, dass ein Phasenübergang im Zuge der Entwässerung und die Freisetzung von Wasserdampf nicht völlig synchron (bzw. bei der gleichen Temperatur) ablaufen, weil das durch einen Phasenübergang freigesetzte H₂O zunächst flüssig sein kann (oberhalb 100 °C = hydrothermale Bedingungen bei einem Wasserdampfdruck entsprechend der Antoine-Gleichung). Zudem benötigt das H₂O (Wasser oder Dampf) Zeit zur Diffusion an die Oberfläche des Prüfkörpers, bevor es abdampfen kann.

4.3.12. Laser Flash Analyse LFA (FGF)

Das Verfahren wurde zur Analyse der Zersetzung von Zementhydratphasen in den Feuerbetonen erprobt. Die sich mit der Zersetzung der Zementhydratphasen erhöhende Porosität im Feuerbeton geht mit einer Verminderung der Temperaturleitfähigkeit des Prüfkörpers einher, was mit LFA erkannt werden kann. Ziel war es, die bei konstanter Ofentemperatur allmählich ablaufende Hydratzersetzung über die damit verbundene zeitliche Änderung der Temperaturleitfähigkeit zu verfolgen. So kann die Kinetik der Hydratzersetzung charakterisiert werden.

Bei dem Laser Flash Verfahren wird die Basisfläche eines planparallelen, scheibenförmigen Prüfkörpers einseitig mit einem Laserimpuls erwärmt. Der anschließende Temperaturanstieg an der Rückseite des Prüfkörpers wird mit einem Pyrometer aufgezeichnet. Aus dem zeitlichen Verlauf des aufgezeichneten Temperaturanstiegs lässt sich die effektive Temperaturleitfähigkeit des Probenmaterials ermitteln.

Die Verwendung des Laser Flash Verfahrens zur Bestimmung der Temperaturleitfähigkeit grobkeramischer feuerfester Erzeugnisse wird erst bei ausreichender Größe der verwendeten Prüfkörper sinnvoll. Das hier verwendete Laser Flash Verfahren für große Prüfkörper unterscheidet sich von herkömmlichen Laser Flash Verfahren in mehreren Punkten:

1. Die zylindrischen Prüfkörper (D=45 mm, H=11 mm) sind ausreichend groß zur Darstellung des Korngefüges der hier untersuchten Feuerbetone. Die große Masse des Prüfkörpers erfordert jedoch eine hohe Energie des Laserimpulses, um auf der Probenrückseite einen gut messbaren Temperaturanstieg zu erreichen. Die Energie wird über die Intensität und die Dauer des Laserimpulses erreicht. Die auf der Probenoberfläche absorbierte Laserleistung darf aber auch nicht zu groß sein, um keine vorzeitige Zersetzung der Hydratphasen oder sogar zu Spalling (Abplatzungen) am Ort des

Laserauftreffens zu bewirken.

- 2. Der auftreffende Laserstrahl bedeckt nicht die gesamte Basisfläche des Prüfkörpers, sondern nur einen ca. 17 mm breiten Fleck im Zentrum. Daher berücksichtigt das Verfahren zur Auswertung und Ermittlung der Temperaturleitfähigkeit keine lineare, sondern eine dreidimensionale Temperaturausbreitung im Prüfkörper. Dies erfolgt über eine inverse Finite-Elemente Methode (iFEM), welche die wesentliche Eigenschaft des Laser Flash Verfahrens für große Prüfkörper darstellt. Über die iFEM wird der mit dem Pyrometer an der Probenrückseite gemessene Temperaturverlauf simuliert. Außer der mehrdimensionalen Temperaturausbreitung im Prüfkörper berücksichtigt die iFEM auch die Dauer des Laserimpulses und die anschließende Wärmeabstrahlung des Prüfkörpers. Bei Übereinstimmung des simulierten mit dem aufgezeichneten Temperaturverlauf (Pyrometersignal) ist der Wert der Temperaturleitfähigkeit bekannt.
- 3. Die Wellenlänge des verwendeten CO₂-Lasers beträgt 10,6 µm. In diesem IR-Bereich sind die meisten Keramiken intransparent. Es ist daher keine Beschichtung der Prüfkörper zur Absorption des Laserimpulses an ihrer Basisfläche notwendig, so wie es bei Anlagen erforderlich ist, die Laser mit kürzeren Wellenlängen verwenden.
- 4. Das Pyrometer ist hochempfindlich und besonders rauscharm. So kann es den Temperaturanstieg auf der Probenrückseite im langwelligen IR-Bereich detektieren. Daher muss auch die Rückseite der Prüfkörper nicht beschichtet werden, denn die langwellige IR-Strahlung wird nur von der Probenoberfläche emittiert. Für kurzwelligere IR-Strahlung können korundbasierte Feuerbetone eine gewisse Transparenz aufweisen, so dass ein entsprechend sensibler Detektor auch Intensität messen könnte, die aus dem Inneren der Probe stammt. Das würde das Ergebnis verfälschen.

Der schematische LFA-Messaufbau ist in

Bild 10 dargestellt. Zur Messung wird der Prüfkörper berührungsarm auf einem Halter so im Ofen positioniert, dass er mit seiner Basisfläche senkrecht und zentrisch zum Laserstrahl steht. Der Aufbau befindet sich in einem Ofen, über dessen Regelung die Prüftemperatur eingestellt wird.

Zur Analyse der Zersetzung einer Hydratphase wird bei der zuvor mit MMH erkannten Temperatur (Temperatur des MMH-Signals) eine Serie von Laserimpulsen abgegeben und die jeweils resultierende Temperaturleitfähigkeit ermittelt. Zwischen den einzelnen Laserimpulsen muss der Prüfkörper immer wieder vollständig bis auf die gewählte Ofentemperatur abkühlen, um eine stetige Aufheizung in Folge der Lasererwärmung zu verhindern. Die dazu notwendige Abkühlzeit begrenzt daher die Wiederholfrequenz der Einzelmessungen. Sie wurde experimentell ermittelt zu 12 Minuten.

Auswertung der LFA-Messungen

Die nach den Laserimpulsen jeweils aufgezeichneten Temperaturverläufe werden zunächst visuell kontrolliert (Bild 11, links). Eine mögliche Temperaturdrift infolge der Ofenregelung wird korrigiert (Bild

11, rechts). Anschließend erfolgt die Kurvenanpassung über die inverse FEM (Bild 12) und so die Ermittlung der Temperaturleitfähigkeit.

Kontrolle der Erwärmung der Prüfkörper in Folge der Messungen (Laserschüsse)

Die Erwärmung eines Prüfkörpers durch Laserbeschuss wurde mit einem Typ-S Thermoelement (Pt/PtRh10, \emptyset =0,3 mm) ermittelt, das auf der Pyrometerseite des Prüfkörpers in einer Rille eingebettet wurde. Nach Laserschüssen wurden kurzzeitig Temperaturanstiege von < 10 K gemessen und 60 s nach dem Schuss < 3 K. Es wird angenommen, dass die festgestellten Temperaturanstiege im Prüfkörper keine Bedeutung in Bezug auf die thermische Zersetzung der Hydratphasen haben.

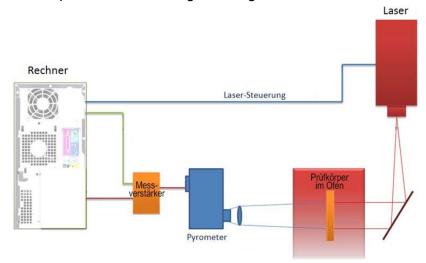


Bild 10: Schematische Darstellung des Laser Flash Verfahrens für große Prüfkörper.

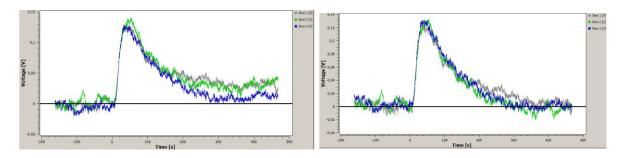


Bild 11: Temperaturverläufe für drei Laserimpulse vor der Driftkorrektur (links) und danach (rechts).

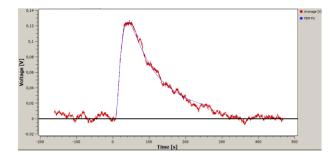


Bild 12: Die rote Kurve zeigt den gemittelten Temperaturverlauf für die drei Laserimpulse, die blau gezeichnete Kurve zeigt den über die iFEM simulierten Temperaturverlauf.

4.3.13. Radar (HS Koblenz)

Radarstrahlung erzeugt ein elektromagnetisches Mikrowellenfeld. Änderungen und Beeinflussungen des Feldes führen zu einer Änderung der Amplitude der elektromagnetischen Wellen. Das vorliegende System arbeitetet im Reflektionsmodus. Änderungen der Amplitude der elektromagnetischen Wellen werden detektiert und können zur zerstörungsfreien Werkstoffprüfung genutzt werden.

Auf Grund der hohen Dielektrizitätszahl von Wasser reagiert das Mikrowellenfeld der Radarantenne äußerst sensibel auf Änderungen der Feuchtigkeit. Dieser Effekt sollte für die Entwicklung einer neuen Analysenmethode zur Detektion des Zerfalls von Hydratphasen genutzt werden. Während des Abbinde-Prozesses von Feuerbeton wird Wasser in die kristalline Struktur der Hydratphasen eingebaut. Bei der Dehydratation wird dieses Wasser wieder freigesetzt.

Konzipierung Radarversuchsstand für die Untersuchung des Entwässerungsverhaltens

Als Basis für den Versuchstand dient eine Waage, welche den Gewichtsverlust eines Prüfkörpers während des Aufheizens aufnimmt. Darauf steht die Heizplatte, auf die wiederum der Prüfkörper gelegt wird. Zum Schutz der Waage vor thermischen Effekten dienen Feuerleichtsteine als Abstandshalter. Um den Prüfkörper befindet sich eine Metallummantelung. Der Prüfkörper ist so von fünf Seiten von elektrisch leitendem Material umgeben. Dies führt zu einer Verbesserung der Radarsignalqualität auf Grund eines definierten Resonanzraums für das elektromagnetische Feld. Das Metallrohr ist von wärmedämmendem Material umgeben, um ein stabiles Temperaturfeld zu erzeugen. Über der Probe befindet sich berührungslos ein Hohlleiter, durch den die Radarwellen auf den Prüfkörper gerichtet werden, siehe Bild 13. Das Signal wird an der Metalloberfläche der Heizplatte und der Seitenwand reflektiert und zur Radarantenne zurückgeworfen. Die Antenne kann sowohl Signale emittieren als auch detektieren.

Die Temperaturkurve der Heizplatte dient als Datengeber für die Temperaturwerte. Die Heizplatte ist bis zu 600 °C aufheizbar. Das Einbringen eines Thermoelements wurde vermieden, um eine Beeinflussung des elektromagnetischen Feldes der Radarstrahlung auszuschließen. Über der Probe befindet sich der Radarhohlleiter, durch den das Mikrowellenfeld erzeugt wird.

Für die Untersuchungen wurde eine Radarantenne der Fa. Anritsu genutzt. Es handelt sich dabei um ein VNA Gerät (Vektorieller Netzwerk Analysator), welches sowohl in der Lage ist, Wellen zu emittieren, als auch Reflektions-Signale zu detektieren. Das Frequenzband besteht aus 255 Frequenzen im Frequenzbereich 3,85 GHz bis 5,8 GHz. Als skalare Größe wird die Amplitude der Welle für die jeweilige Frequenz, mit einem Zeitstempel detektiert. Für die Auswertung wird aus den 255 Einzelwerten der Mittelwert für die Amplituden des jeweiligen Zeitstempels gebildet. So können Änderungen der Amplitude des Radarsignals über die Zeit dargestellt werden.

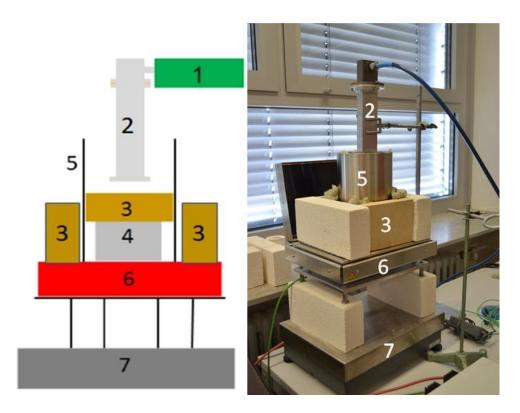


Bild 13: Links: Schematische Darstellung des Radar- -Versuchstandes zur Untersuchung des Entwässerungsverhaltens von Feuerbetonen. Rechts: Foto des umgesetzten Versuchstandes. 1 Radarantenne, 2 Hohlleiter, 3 Wärmedämmmaterial, 4 Probe, 5 Metallummantelung, 6 Heizplatte, 7 Waage.

Auf Grund der Konstruktion und des gewählten Frequenzbereiches kommt es zur Bildung eines Resonanzfeldes innerhalb des Prüfkörpers (Bild 14). Das Bild zeigt eine Simulation des Resonanzfeldes bei 3,85 GHz ohne Prüfkörper.

Untersuchung des Entwässerungsverhaltens mit Radartechnologie

Die noch feuchte Probe wird durch eine Heizplatte einseitig mit einer konstanten und bekannten Aufheizrate (bei den Messergebnissen angegeben) auf 600 °C erhitzt. Durch die einseitige Aufheizung wird angenommen, dass es zu einer Trockenfrontentwicklung innerhalb der Probe senkrecht zum elektromagnetischen Feld kommt. Dies soll zu einer Verbesserung der Signalqualität beitragen. Der Trocknungsfortschritt wird simultan über den Gewichtsverlust der Probe dokumentiert. Durch das

Vergleichen der Radaramplitude mit dem Gewichtsverlust der Probe kann eine Aussage über den Zerfall der Hydratphasen getroffen werden.

Die Untersuchungen des Entwässerungsverhaltens wurde an zylindrischen Prüfkörpern (\emptyset = 10 cm, h= 5 cm) durchgeführt. Die Proben wurden wie in Kapitel 4.2.2 beschrieben hergestellt und für 48 h bei 20 °C und 95 % rel. Luftfeuchte ausgelagert.

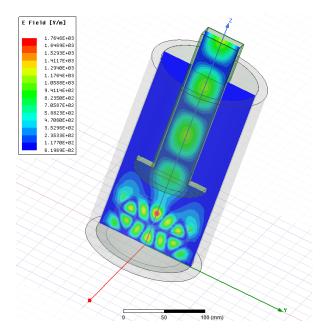


Bild 14: Simulation des Resonanzfeld bei 3,85 GHz ohne Prüfkörper. Zu sehen ist der Hohlleiter, durch den das Signal im Messbereich (= Innenraum des umgebenden zylindrischen Metallmantels) erzeugt wird. Der Boden entspricht der Heizplatte. Innerhalb des Metallmantels wird ein stabiles Mikrowellenfeld ausgebildet (Simulation bereitgestellt von der Christian-Albrechts-Universität zu Kiel, Institut für Elektrotechnik und Informationstechnik - Lehrstuhl für Hochfrequenztechnik).

Um thermische Einflüsse auf den Versuchsaufbau auszuschließen, wurde eine Nulllinienmessung durchgeführt. Jede Probe wird zwei Mal hintereinander ohne Veränderung des Versuchsaufbaues erhitzt und vollständig abgekühlt. Während der ersten Aufheizung bis 600 °C dehydriert die Probe vollständig. Während der zweiten Messung wird das Radarsignal einzig von den thermischen Effekten innerhalb der Apparatur beeinflusst. Es ist anzunehmen, dass beide Messungen bei gleichbleibenden Parametern, den gleichen thermischen Effekten unterliegen. Es wird angenommen das Unterschiede in beide Messungen auf der Trocknung und Dehydrierung der Probe während der Temperaturbehandlung beruhen. Die zweite Messung wird als Nulllinie verwendet. Durch das Subtrahieren der Nulllinien von der ersten Messung werden die thermischen Einflüsse auf das Messsystem herausgerechnet.

5. Untersuchungsergebnisse

5.1. Untersuchung der Hydratphasenbildung an Zementsuspensionen (HS Koblenz)

Zur Untersuchung des Einflusses des verwendeten Verflüssigers und dessen Konzentration auf die beim Abbinden entstehenden Hydratphasen wurden zusätzlich zu den vorgesehenen Versuchen an Feuerbetonen auch Versuche an Zementsuspensionen durchgeführt. Im Vergleich zu Modell-Feuerbetonen weisen die Zementsuspensionen eine höhere Konzentration an Hydratphasen auf, wodurch sie mit Röntgenbeugungsmethoden sicherer analysiert werden können. Die Zementsuspensionen wurden mit den in diesem Vorhaben verwendeten Verflüssigern, jeweils in zwei verschiedenen Zugabemengen, versetzt (siehe Tabelle 8). Die nachfolgend angegebenen Zugabemengen beziehen sich auf eine Zementsuspension von 100 g Zement in 200 g deioniertem Wasser. Zur Hydratation wurden die Zementsupensionen in versiegelten Probenbeuteln für 48 Stunden bei 20 °C im Klimaschrank gelagert. Zur Untersuchung des Einflusses unterschiedlicher Trocknungstemperaturen auf die Hydratphasenbildung wurden Teilmengen des verfestigten Materials entnommen und weitere 24 Stunden im Trockenschrank bei 50 °C bzw. 100 °C offen gelagert. Anschließend wurden die bei 20 °C hydratisierten, ebenso wie die zusätzlich thermisch vorgetrockneten Proben gefriergetrocknet, in einer Scheibenschwingmühle pulverisiert und mittels Röntgenbeugungsanalyse untersucht. Die Ergebnisse wurden mit denen einer reinen Zementsuspension (ohne Verflüssiger) verglichen.

Die Zementsuspension ohne Verflüssiger zeigt nach Vorbehandlung bei 50 °C im Trockenschrank gegenüber dem gleichen Material, das nach der Hydratation im Klimaschrank bei 20 °C untersucht wurde, keine signifikanten Unterschiede in der Konzentration der Hydratphasen CAH₁₀ und C₂AH₈. Beide Hydratphasen haben sich jedoch in der bei 100 °C im Trockenschrank vorbehandelten Probe vollständig zugunsten von C₃AH₆ zersetzt. Gibbsit (AH₃) wurde nur nach Vorbehandlung bei 100 °C nachgewiesen. Der Zement ist nach 48 Stunden Lagerung im Klimaschrank noch nicht vollständig hydratisiert. Die Zementphase CA hydratisiert bei längerer Vorbehandlung bei höheren Temperaturen nach, für CA₂ ist keine signifikante Nachhydratation feststellbar.

Der Verflüssiger Castament FS 60 (Polycarboxylatether, PC) hemmt die Bildung der Hydratphasen. Bei Zugabe von 6 g PC (Mischung 9) werden deutlich weniger Hydratphasen gebildet, bei 0,6 g (Mischung 5) ist die Hemmung weniger ausgeprägt. Die Veränderungen durch Vorbehandlung bei 50 °C bzw. 100 °C entsprechen den Beobachtungen für Zementsuspensionen ohne Verflüssiger, dabei sind beide Zementphasen (CA und CA₂) mit steigender PC-Konzentration weniger stark hydratisiert. Bei niedriger PC-Zugabemenge ist die Abhängigkeit der CA-Hydratation von der Vorbehandlungstemperatur ausgeprägter.

Bei Verwendung von KX2314 (Acrylat, A) in der höheren Zugabemenge (Mischung 8: 15 g,)

wird die Bildung von CAH₁₀ und C₂AH₈ während der Lagerung bim Klimaschrank nahezu vollständig unterdrückt. Nach Vorbehandlung bei 100 °C bildet sich C₃AH₆ in geringer Konzentration. AH₃ bildet sich nicht signifikant. CA hydratisiert bei 50 °C und 100 °C stärker nach. Für CA₂ ist keine signifikante Nachhydratation feststellbar. Beide Zementphasen sind weniger stark hydratisiert als in der Zementsuspension ohne Zugabe von Verflüssiger oder bei Zugabe von PC als Verflüssiger. Bei geringer Zugabe von Acrylat (Mischung 4: 1,5 g) werden CAH₁₀ und C₂AH₈ in geringer Konzentration gebildet, nach Vorbehandlung bei 100 °C auch C₃AH₆. Gibbsit (AH₃) ist sowohl nach der Hydratisierung im Klimaschrank als auch nach der anschließenden Temperaturbehandlung bei 50 °C oder 100 °C in geringer Menge vorhanden.

Die Wirkung des Verflüssigers Budit 4H (Natriumpolyphosphat, P) wurde mit und ohne zusätzliche Beigabe von Zitronensäure (Z) untersucht. Wird ausschließlich P zugegeben, entspricht die Hydratphasenentwicklung weitgehend der für die reine Zementsuspension. Während der Vorbehandlung bei 100 °C wird mit steigender Zugabemenge (Mischung 2: 1,5 g → Mischung 6: 15 g) jedoch weniger C₃AH₆ und Gibbsit gebildet. Beide Zementphasen (CA und CA₂) sind ähnlich stark hydratisiert wie in der Zementsuspension ohne Zugabe von Verflüssiger. Bei der Kombination von Budit 4H mit Zitronensäure (P+Z) ist die Hydratphasenentwicklung bei 20 °C und 50 °C ähnlich der für die Zementsuspension mit P, die Bildung von Gibbsit und C₃AH₆ bei 100 °C ist unterdrückt. Nur in der Kombination von Budit 4H und Zitronensäure in hoher Zugabemenge (Mischung 7: 15 g Phosphat + 2 g Zitronensäure) ist die Hydratation der Zementphasen CA und CA₂ im Vergleich zur Zementsuspension ohne Zugabe von Verflüssiger deutlich gehemmt. Erst während der Auslagerung bei 100 °C hydratisieren beide Phasen nach.

Zusammenfassend wird die Hydratation der Zementphasen von allen verwendeten Verflüssigern gehemmt, wobei eine höhere Konzentration der Verflüssiger zu höheren Konzentrationen von residualen, d.h. nicht hydratisierten Zementphasen führt. Dieses Verhalten ist besonders für Acrylat als Verflüssiger ausgeprägt. Liegt noch viel residualer Zement vor, haben sich bis zum Zeitpunkt der Unterbrechung der Hydratation wenig Zementhydratphasen gebildet.

Eine Nachhydratation von CA bei 50 °C oder 100 °C ist wenig ausgeprägt und findet für CA₂ nicht statt. Nach Auslagerung im Klimaschrank (und folgender Gefriertrocknung) sind lediglich CAH₁₀ und C₂AH₈ nachweisbar, deren Konzentration aber stark vom Verflüssiger und dem Grad der Hydratation der Zementphasen abhängt. AH₃ und C₃AH₆ zeigen sich erst in den Proben, die bei 100 °C im Trockenschrank gelagert wurden, aber nur wenn bereits bei niedrigeren Temperaturen CAH₁₀ und C₂AH₈ gebildet wurden.

5.2. Entwicklung neuer Modell-Feuerbetone mit abgestuften Zementgehalten und verschiedenen Verflüssigern (HS Koblenz)

Im Rahmen des Forschungsvorhabens wurden 18 unterschiedliche Modell-Feuerbetone mit 3fach abgestuften Zementgehalten (MCC: 10 Ma.-% CAC, LCC: 5 Ma.-% CAC, ULCC: 2 Ma.-% CAC), variiert mit drei Verflüssigern (Natriumpolyphosphat+Zitronensäure, Acrylat, Polycarboxylatether) sowie mit und ohne Faserzugabe entwickelt und untersucht. In allen folgenden Darstellungen werden den Verflüssigern Farben zugeordnet:

- blau: Ergebnisse zu Versätzen mit Natriumpolyphosphat + Zitronensäure (P+Z)
- grün: Ergebnisse zu Versätzen mit Acrylat (A)
- rot: Ergebnisse zu Versätzen mit Polycarboxylatether (PC)

Als Referenz wurde ein selbstverdichtender, nicht verflüssigter Feuerbeton (RC) entwickelt. Der folgende Abschnitt stellt die Eigenschaften der für die weitere Verwendung im Vorhaben als geeignet beurteilten Feuerbetone vor.

5.2.1. Verarbeitungseigenschaften, Abbindeverhalten und Festigkeitsentwicklung (HS Koblenz)

Ziel der Versatzentwicklung war es, bei Einsatz unterschiedlicher Verflüssiger, gut miteinander vergleichbare Modell-Feuerbetone mit ähnlichen Eigenschaften in Bezug auf Verarbeitbarkeit, Wasserbedarf und Porosität nach 48 Stunden Abbindezeit zu entwickeln. Als erste Feuerbetongruppe wurden die LCC, beginnend mit dem Phosphat-verflüssigten Versatz, entwickelt. Der Wassergehalt wurde soweit wie möglich reduziert, um homogene Prüfkörper ohne Entmischung von Matrix und Grobkorn zu erreichen. Der resultierende Versatz ist selbstverdichtend, zeigt aber ohne äußere Energiezufuhr durch Vibration ein sehr träges Fließverhalten. Dieser Versatz und dessen Verarbeitungseigenschaften bilden die Ausgangsbasis für die weitere Versatzentwicklung.

Verarbeitungseigenschaften

Zu Beginn der Versatzentwicklung erprobte Mischungen zeigten zum Teil bereits wenige Minuten nach dem Ende des Mischvorgangs ein erstes Ansteifen, was ein gleichmäßiges Befüllen der Prüfkörperformen verhinderte. Um einen ausreichend langen Verarbeitungszeitraum zu erreichen, war es erforderlich, den Verflüssiger Natriumpolyphosphat mit einem die Abbindung verzögerndem Additiv zu kombinieren. Dazu wurde Zitronensäure als Verzögerer eingesetzt. Die für das Forschungsvorhaben ausgewählten Versätze bieten ein für die weitere Untersuchung ausreichendes Verarbeitungsfenster von > 15 Minuten. Das Fließverhalten der entwickelten Feuerbetone wird durch das zeitabhängige Ausbreitmaß veranschaulicht. Die in Bild 15 bis Bild 21 dargestellten Fließkurven wurden unter Vibration während der ersten 60 Sekunden der Versuchsdauer ermittelt (siehe Abschnitt 4.3.1).

Im Rahmen der Versatzentwicklung war angestrebt, für alle Modell-Feuerbetone ähnliche Verarbeitungseigenschaften bei gleichbleibender Wasserzugabe einzustellen, um die Überlagerung von verflüssigerabhängigen Effekten durch die Auswirkungen unterschiedlicher Porositäten infolge unterschiedlicher Wasseranteile zu vermeiden. Für die Verflüssiger Acrylat (A) und Natriumpolyphosphat + Zitronensäure (P+Z) wurden für die zuerst entwickelten LCC (5 % Zementanteil) bei geringer Abweichung in der Wasserzugabe nahezu gleiche Ausbreitmaße erreicht. Dagegen zeigt der mit Polycarboxylatether (PC) versetzte Feuerbeton einen deutlich geringeren Wasserbedarf. Um die Verarbeitungseigenschaften der Feuerbetone anzugleichen, wurde die PC-Konzentration variiert. Auch bei minimierter Zugabe von Verflüssiger (PC: 0,06 Ma.-%) zeigt der LCC-PC eine höhere Fließfähigkeit als die entsprechenden, mit Acrylat bzw. Phosphat / Zitronensäure verflüssigten Feuerbetone (Bild 18). Ausgehend von diesen LCC wurden die Modell-Feuerbetone der Versatzmatrix entwickelt.

Die ULCC (2 % Zementanteil) zeigen bei gleicher Wasserzugabe ein etwas höheres Ausbreitmaß (Bild 20) als die entsprechenden LCC. Bei den MCC führt der deutlich höhere Zementanteil (10 %) zu einem höheren Wasserbedarf für MCC-A und MCC-P+Z. Die stärkere Verflüssigungswirkung des PC zeigt sich umso deutlicher, je höher der Zementanteil im Versatz ist. Während bei ULCC nur ein geringer Unterschied zu den A- und P+Z-Versätzen festzustellen ist, war es beim MCC-PC erforderlich, die Wasserzugabe zu reduzieren, um die Suspension zu stabilisieren und dem Absetzen von Grobpartikeln entgegenzuwirken. Trotz der reduzierten Wasserzugabe ist das Ausbreitmaß des MCC-PC deutlich höher als das der übrigen Feuerbetone (Bild 16).

Um Modell-Feuerbetone unterschiedlicher Porosität bei sonst gleicher Zusammensetzung zu erhalten, wurden die entwickelten Versätze durch Zugabe von Fasern (F) variiert. Die Fließfähigkeit der faserhaltigen Feuerbetone wurde zum Ausgleich des Einflusses der Fasern durch Änderung der Wasserzugabe in diesen Versätzen angepasst. Da es nicht wie geplant möglich war, die Wasserzugabe für alle Modell-Feuerbetone konstant zu halten, muss bei der weiteren Betrachtung der Eigenschaften dieser Feuerbetone neben dem Einfluss des Verflüssigers auch der Einfluss der variierenden Wassergehalte differenziert werden.

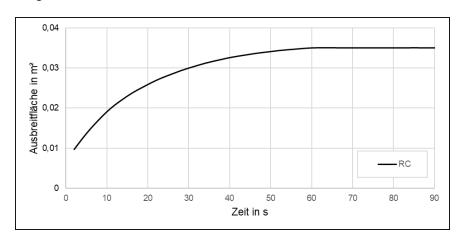


Bild 15: Ausbreitverhalten des Referenz-Feuerbetons (RC mit 20 % Calziumaluminatzement).

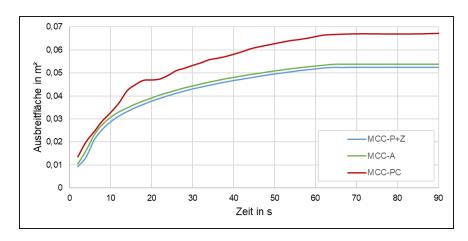


Bild 16: Ausbreitverhalten der entwickelten MCC-Feuerbetone. MCC-P+Z und MCC-A zeigen bei gleichem Wassergehalt (6,5 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche des MCC-PC ist trotz reduziertem Wassergehalt (4,8 %) deutlich größer.

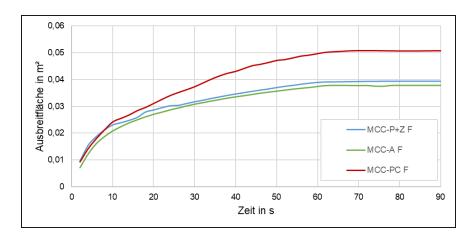


Bild 17: Ausbreitverhalten der entwickelten MCC-Feuerbetone mit Fasern. MCC-P+Z F und MCC-A F zeigen bei gleichem Wassergehalt (6,6 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche des MCC-PC F ist trotz reduziertem Wassergehalt (4,9 %) erhöht. Die Zugabe von Fasern verringert die Fließfähigkeit.

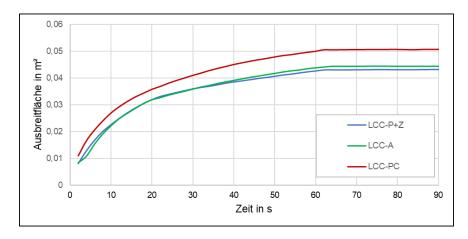


Bild 18: Ausbreitverhalten der entwickelten LCC-Feuerbetone. LCC-P+Z und LCC-A zeigen bei ähnlichem Wassergehalt (5,4 % und 5,2 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche des LCC-PC ist bei gleichem Wassergehalt (5,4 %) deutlich größer.

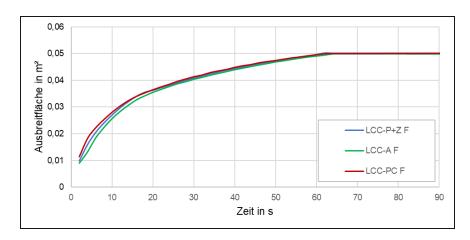


Bild 19: Ausbreitverhalten der entwickelten LCC-Feuerbetone mit Fasern. LCC-P+Z F und LCC-A F zeigen bei gleichem Wassergehalt (5,8 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche des LCC-PC F ist bei geringerem Wassergehalt (5,2 %) ebenfalls ähnlich. Die Zugabe von Fasern bei gleichzeitiger Erhöhung der Wasserzugabe führt zu einer angeglichenen Fließfähigkeit.

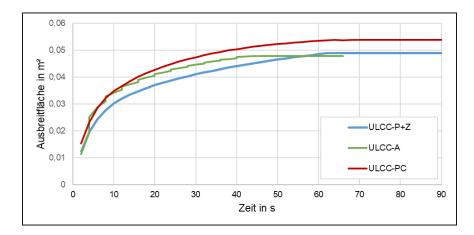


Bild 20: Ausbreitverhalten der entwickelten ULCC-Feuerbetone. ULCC-P+Z und ULCC-A zeigen bei gleichem Wassergehalt (5,4 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche des ULCC-PC ist bei gleichem Wassergehalt etwas größer.

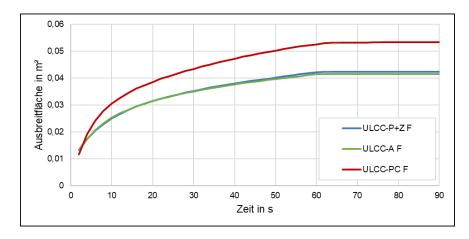


Bild 21: Ausbreitverhalten der entwickelten ULCC-Feuerbetone mit Fasern. ULCC-P+Z F und ULCC-A F zeigen bei gleichem Wassergehalt (5,6 %) ein sehr ähnliches Ausbreitverhalten. Die Ausbreitfläche von mit ULCC-PC F verflüssigten Feuerbetonen ist bei gleichem Wassergehalt deutlich größer. Die Zugabe von Fasern verringert im Vergleich zu faserfreien Mischungen die Fließfähigkeit.

Abbindeverhalten und Festigkeitsentwicklung

Das Abbindeverhalten wurde durch Bestimmung der elektrischen Leitfähigkeit, der Ultraschallgeschwindigkeit und der Entwicklung des pH-Werts während der ersten 48 Stunden nach dem Mischen untersucht (siehe Abschnitt 4.3.2). Bild 22 fasst die Ergebnisse der drei Untersuchungsmethoden für den Referenzversatz RC zusammen. Die Entwicklung der Ultraschallgeschwindigkeit (US) und der elektrischen Leitfähigkeit (Lf) wurden mehrfach gemessen. Zahlenangaben hinter der Feuerbetonbezeichnung indizieren die fortlaufende Nummer der untersuchten Mischung des gleichen Feuerbetontyps. Alle drei Graphen zeigen eine sprunghafte Änderung der Messwerte nach ca. 3 Stunden. Nach ca. 5 Stunden flacht der der Kurvenverlauf ab. Die Verfestigung (Messung US) des Materials ist zu diesem Zeitpunkt weitgehend abgeschlossen. Der Ladungstransport ist im verfestigten Material eingeschränkt (Messung Lf). Der während dem Abbinden angestiegene pH-Wert bleibt nach Abklingen der Reaktion unverändert.

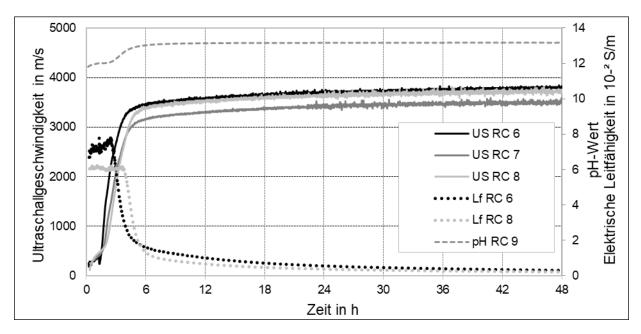


Bild 22 Abbindeverhalten und Festigkeitsentwicklung des Referenzversatzes RC (Messung von Ultraschallgeschwindigkeit (US), elektrischer Leitfähigkeit (Lf) und pH-Wert). Die Messwerte aller drei Methoden zeigen ab etwa 5 Stunden nach dem Mischen kaum noch eine Veränderung.

Die Kurvenverläufe der gemessenen Ultraschallgeschwindigkeiten als Indikator für die Festigkeitsentwicklung des Feuerbetons und der elektrischen Leitfähigkeiten können, wie von Kasper et al
/KAS12/ ausgeführt, mit der Bildung von diskreten Hydratphasen im Abbindeprozess korreliert werden. Je nach eingebrachter Mischenergie kann sich die Temperatur der Mischung während des
Mischvorgangs erhöhen, was typischerweise wiederum die Hydratationskinetik und die Art der gebildeten Hydratphasen beeinflusst. Bei Lagerung im Klimaschrank (20 °C) sinkt die Temperatur der
Mischung und damit, gemäß der Arrhenius-Beziehung, auch die elektrische Leitfähigkeit (Phase 1,
für RC nicht beobachtet). Der starke Anstieg der Ultraschallgeschwindigkeit und der Abfall der elektrischen Leitfähigkeit wird der Sammelkristallisation von Hydratphasen mit einhergehender Ausbildung

eines festigkeitssteigernden Gefüges zugeordnet. Die Verringerung des Porenwassers infolge der Bildung der Hydratphasen vermindert die elektrische Leitfähigkeit (Phase 2). Das Abklingen der Hydratationsreaktion ist gekennzeichnet durch ein Abflachen der Kurvenverläufe (Phase 3). Zum Ende des Beobachtungszeitraums ist das Abbinden weitgehend, aber noch nicht vollständig abgeschlossen. Die Leitfähigkeit nähert sich hier bereits asymptotisch dem Wert 0 S/m und die Ultraschallaufzeit nimmt nur noch sehr langsam zu. Zusätzlich zu den beschriebenen Messmethoden wurde an einer Auswahl von Feuerbetonen der pH-Wert während des Abbindens gemessen. Dabei zeigt sich eine zweistufige Entwicklung: Der bereits unmittelbar nach dem Mischen alkalische pH-Wert steigt in der ersten Stunde weiter an, was der Lösung von Ionen in der Feuerbetonsuspension zugeschrieben wird. Nach einer Phase der Stagnation steigt der pH-Wert während der Phase der Sammelkristallisation von Hydratphasen erneut an und bleibt nach Abklingen der Reaktion stabil.

Zur besseren Übersicht werden die Ergebnisse der für die verflüssigten Feuerbeton verwendeten Methoden in den nachfolgenden Abbildungen getrennt und unterteilt nach den Feuerbetonfamilien (MCC, LCC, ULCC) dargestellt.

Die Messergebnisse der **MCC** sind in Bild 23 bis Bild 25 wiedergegeben. Die Ultraschallgeschwindigkeit und die elektrische Leitfähigkeit wurden mehrfach bestimmt und sind gut reproduzierbar, gezeigt wird hier jeweils ein typischer Kurvenverlauf. Die drei Messmethoden zeigen übereinstimmend, dass die verwendeten Verflüssigersysteme verzögernd auf den Abbindeprozess wirken, wenn man die Ergebnisse mit dem RC-Feuerbeton vergleicht.

Bei Zugabe von Natriumpolyphosphat und Zitronensäure (MCC-P+Z) ist nach einem ersten raschen Ansteifen wenige Minuten nach dem Mischen der Übergang in eine ca. 11stündige Ruhephase zu beobachten, in der die Festigkeitsentwicklung stagniert. Die dann einsetzende Verfestigung durch die Sammelkristallisation von Hydratphasen verläuft etwas langsamer als für den RC. Zum Ende des 48stündigen Beobachtungszeitraums werden aber ähnliche Ultraschallgeschwindigkeiten gemessen wie beim RC, dies indiziert eine annähernd gleiche Festigkeit bei halbem Zementgehalt. Das anfängliche Ansteifen reduziert die Ionen-Beweglichkeit und zeigt sich daher, neben der Entwicklung der Ultraschalllaufzeit, auch in einer geringeren elektrischen Leitfähigkeit. Diese nimmt vor dem Einsetzen der Abbindereaktion mit steigenden pH-Wert zunächst wieder zu, bevor sie während der eigentlichen Hydratationsphase stark abnimmt.

Der Acrylat-verflüssigte Feuerbeton, **MCC-A**, zeigt ebenfalls zu Beginn ein Ansteifen, das jedoch langsamer verläuft als bei MCC-P+Z. Während der anschließende Ruhephase ist die Festigkeit leicht rückläufig. Die zweite Stufe der Festigkeitszunahme setzt erst nach mehr als 24 Stunden ein und verläuft dann ähnlich schnell wie bei MCC-P+Z, die erreichte US-Geschwindigkeit nach dem Abbinden ist aber niedriger. Nach der anfänglichen Verringerung der elektrischen Leitfähigkeit während des Ansteifens bleibt diese während der Ruhephase annähernd unverändert, obwohl der pH-Wert

gegen Ende der Ruhephase allmählich ansteigt. Mit dem Einsetzen der eigentlichen Hydratation, nimmt die elektrische Leitfähigkeit signifikant ab, verbleibt aber bis zum Ende des Beobachtungszeitraums deutlich höher als bei den mit Phosphat oder Polycarboxylatether verflüssigten Feuerbetonen.

Die Zugabe von Polycarboxylatether führt dazu, dass der MCC-PC zunächst eine ca. 7stündige Ruhephase, ohne vorheriges Ansteifen, durchläuft. Die dann einsetzende Hydratation verläuft ähnlich schnell wie beim RC ohne Zugabe von Verflüssigern, die gegen Ende der Abbindephase erreichte Ultraschallgeschwindigkeit liegt, trotz nur halb so hohem Zementgehalt, über derjenigen des RC. Dem Einsetzen der Festigkeitsentwicklung geht eine Phase mit ansteigendem pH-Wert voraus. Eine rasche Abnahme der elektrischen Leitfähigkeit ist erst nach dem Einsetzen der Hydratation, zum Zeitpunkt der höchsten Hydratationsgeschwindigkeit (Wendepunkt im Kurvenverlauf der Ultraschallgeschwindigkeit) feststellbar.

Bei Zugabe von Fasern zeigen die MCC-Feuerbetone ein sehr ähnliches Abbindeverhalten wie die entsprechenden faserfreien Feuerbetone. Zum Ende des Beobachtungszeitraums erreicht der MCC-PC F eine etwas geringere Festigkeit als der faserfreie MCC-PC. Die Festigkeit der faserhaltigen Feuerbetone MCC-P+Z F und MCC-A F stimmt zu diesem Zeitpunkt mit der der entsprechenden faserfreien Feuerbetone überein, liegt aber vor der zweiten Stufe der Festigkeitsentwicklung etwas niedriger. In der Entwicklung der elektrischen Leitfähigkeit ist zwischen Feuerbetonen mit und ohne Fasern kein signifikanter Unterschied feststellbar.

Nach dem Modell zur Hydratation von Calciumaluminat nach Götz Neunhöfer /GÖT2005/ lösen sich aus den CA-Partikeln beim Kontakt mit Wasser zunächst Ca2+-lonen und es bildet sich eine für Ionen weitgehend undurchlässige, nicht kristalline Schicht aus Al-Hydroxyhydraten um die CA-Partikel, die die Hydratation zunächst behindert. Erst durch einen Alterungsprozess wird diese Schicht wieder durchlässig und weiteres Ca²⁺ kann in Lösung gehen. Durch die lokal erhöhte Ca²⁺ Konzentration können nun Hydratphasen aus der Lösung kristallisieren. Durch die Bildung von kristallinen Hydratphasen wird der Porenflüssigkeit fortlaufend Ca²⁺ entzogen und neu aus den CA-Partikeln gelöst, somit wird eine rasche Sammelkristallisation ausgelöst. Das rasche Ansteifen von MCC-P+Z und MCC-A und die folgende Ruhephase legen nahe, dass diese Verflüssiger zu keiner stabilen Suspension führen, wobei nicht klar sein kann, was genau im Feuerbeton abläuft. Neben einer reinen Koagulation des Systems kann auch die Bildung einer nicht kristallinen, gelartigen Phase diskutiert werden. Das bei MCC-P+Z (F) und MCC-A F erkennbare Ansteigen der elektrischen Leitfähigkeit gegen Ende der Ruhephase legt nahe, dass durch eine Alterung des Gels zu diesem Zeitpunkt wieder mehr Ca²⁺-Ionen in Lösung gehen und die Sammel-Hydratation auslösen können. Davon abweichend, erfolgt beim MCC-PC kein erkennbares erstes Ansteifen. Hier wird angenommen, dass der Polycarboxylatether die Oberfläche der Zementkörner belegt und so deren Hydratation behindert. Wenn die erste Verfestigung des MCC-PC einsetzt, geht sie unmittelbar in eine rasche Hydratation über, so dass hier kein zweiphasiger Prozess erkennbar ist.

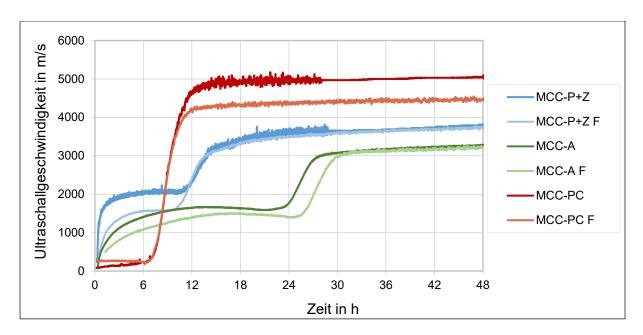
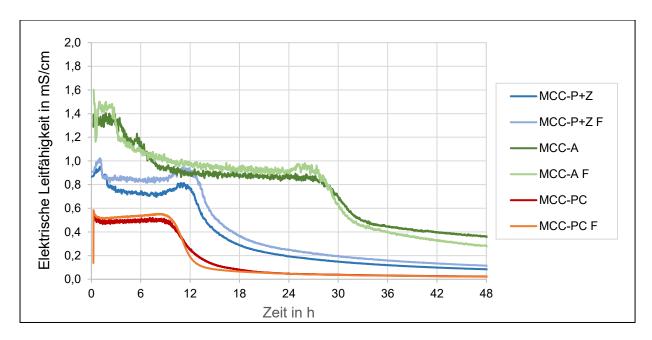



Bild 23: Ultraschallmessungen an MCC mit verschiedenen Verflüssigern. Charakteristische Kurvenverläufe für MCC-P+Z: schnelles Ansteifen wenige Minuten nach Mischende, anschließende Ruhephase, ca. 11 Stunden nach dem Mischende Einsetzen einer zweiten Verfestigungsstufe. MCC-A: erste Verfestigung wenige Minuten nach Mischende, aber langsamer als bei P+Z, nach ca. 10 -14 Stunden leichter Abfall des Festigkeitsniveaus, nach ca. 24-27 Stunden Einsetzen einer zweiten Verfestigungsstufe. MCC-PC: zu Beginn lange Ruhephase, ca. 7 Stunden nach dem Mischende rasche und stetige Verfestigung. Für das nach 48 Stunden erreichte Festigkeitsniveau gilt PC > P+Z > A. Die Zugabe von Fasern führt nur zu geringen Abweichungen in der Festigkeitsentwicklung.

Leitfähigkeitsmessungen an MCC mit verschiedenen Verflüssigern. Charakteristische Kurvenverläufe für MCC-P+Z: nach Mischende sattelförmiger Verlauf: kurzzeitige Erhöhung der Leitfähigkeit, nach ca. 1 Stunde Ruhephase mit leicht verringerter Leitfähigkeit, nach ca. 9 Stunden wieder zunehmend, nach ca. 12 Stunden zunächst rasch abfallend, nach ca. 20 Stunden nur noch langsame Verringerung der Leitfähigkeit. MCC-A: zu Beginn ca. 4 Stunden währende Phase hoher elektr. Leitfähigkeit, dann abfallend, nach ca. 9 Stunden Übergang in Ruhephase, nach ca. 24-27 Stunden erneuter Abfall. Nach ca. 32 Stunden nur noch geringe Abnahme der Leitfähigkeit. MCC-PC: ausgehend von geringer Leitfähigkeit unmittelbar nach Mischende nimmt diese in den ersten Minuten leicht ab, steigt dann allmählich wieder auf das Ausgangsniveau an. Nach ca. 9 Stunden rasche Verringerung der Leitfähigkeit, nach ca. 15 Stunden nur noch geringe Abnahme, nähert sich asymptotisch dem Wert Null. Für die Leitfähigkeit gilt im Beobachtungszeitraum gilt: A > P+Z > PC. Die Zugabe von Fasern führt nur zu geringen Abweichungen in der elektrischen Leitfähigkeit.

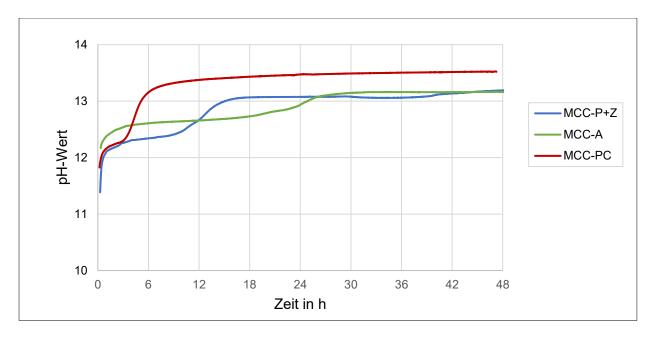


Bild 25: Entwicklung des pH-Werts der MCC mit verschiedenen Verflüssigern. Bei allen verwendeten Verflüssigern beginnt die pH-Wert-Entwicklung mit einem raschen Anstieg unmittelbar nach Mischende, gefolgt von einer Ruhephase, während der der pH-Wert nur sehr langsam zunimmt. Auf die Ruhephase folgt ein zweiter Anstieg. Deutliche Unterschiede zwischen den Verflüssigern zeigen sich in der Dauer der anfänglichen Ruhephase und in der Geschwindigkeit der pH-Wert-Zunahme im zweiten Anstieg. Charakteristische Kurvenverläufe für MCC-P+Z: erste Ruhephase bei pH 12,2, zweiter Anstieg im Zeitraum 9 bis 15 Stunden nach Mischende auf pH 13, dann nur noch geringe Schwankungen. MCC-A: lange erste Ruhephase bei pH 12,4, langsamer zweiter Anstieg im Zeitraum 17 bis 26 Stunden nach Mischende auf pH 13,2, dann stagnierend. MCC-PC: kurze Ruhephase und rascher zweiter Anstieg im Zeitraum 3 bis 7 Stunden nach Mischende auf pH-Werte über 13,3. Im weiteren Verlauf erhöht sich der pH-Wert nur noch sehr langsam bis auf 13,5.

Die Ergebnisse der Messungen von Ultraschallgeschwindigkeit, elektrischer Leitfähigkeit und pH-Wert an LCC-P+Z, LCC-A und LCC-PC, mit und ohne Zugabe von Fasern, sind in Bild 26 bis Bild 28 wiedergegeben. Sowohl die Ultraschallgeschwindigkeit als auch die elektrische Leitfähigkeit wurden mehrfach bestimmt. Hierbei war die Wiederholbarkeit der Messergebnisse für die MCC-Feuerbetone deutlich besser als für die LCC-Feuerbetone. Gezeigt werden hier die typischen Messverläufe.

Die Festigkeitsentwicklungen verlaufen für die LCC ähnlich wie für MCC im jeweils gleichen Verflüssigersystem. Im Vergleich liegen die Festigkeiten nach 48 Stunden LCC etwas niedriger, da (bedingt durch die Menge des zugegebenen Zements) weniger Zementhydratphasen ausgebildet werden, die wiederum maßgeblich für die Grünfestigkeiten sind. Die zeitliche Änderung der elektrischen Leitfähigkeit ist bei den LCC weniger stark ausgeprägt als bei den MCC, da weniger Hydratphasen gebildet werden können und somit weniger Porenwasser gebunden wird. Die Entwicklung des pH-Werts der LCC entspricht weitgehend den Ergebnissen der Messungen der MCC, nimmt aber mehr Zeit in Anspruch, was sich analog in der Festigkeitsentwicklung widerspiegelt.

In Abhängigkeit der verwendeten Verflüssiger können folgende Unterschiede zusammengefasst werden: Für **LCC-PC und LCC-PC F** ist die anfängliche Ruhephase gegenüber MCC-PC und MCC-PC

F deutlich verkürzt. Nach 1 bzw. 2,5 Stunden setzt ein ersten Ansteifen ein, welches nach weiteren 2 Stunden in die Hydratationsphase übergeht. Die elektrische Leitfähigkeit verringert sich im Zeitraum der schnellen Festigkeitszunahme nur wenig im Vergleich zur rapiden Änderung, die für MCC-PC und MCC-PC F beobachtet wird. Der pH-Wert steigt beim LCC-PC F erst nach der Zunahme der Festigkeit an, beim MCC-PC dagegen geht die pH-Wert-Änderung der Festigkeitsänderung voraus.

Für LCC-P+Z F ist nur eine geringfügige Verkürzung der Ruhephase gegenüber MCC-P+Z F erkennbar, dagegen zeigt der LCC-P+Z nach dem ersten Ansteifen keine Ruhephase mit gleichbleibender Festigkeit, sondern ein zunächst langsames Ansteigen, das sich ca. 18 Stunden nach dem Mischen beschleunigt. Diese zweite Verfestigungsstufe setzt deutlich später ein als bei MCC-P+Z ein und die Festigkeitszunahme verläuft langsamer. Gegen Ende des Beobachtungszeitraums ist eine leichte Verringerung der Festigkeit erkennbar. Ebenso wie beim entsprechenden MCC erhöht sich bei LCC-P+Z F vor dem Einsetzen der zweiten Verfestigungsstufe die elektrische Leitfähigkeit kurzzeitig, gefolgt von einer stetigen Abnahme. Obwohl bei der Festigkeitsentwicklung für LCC-P+Z in diesem Zeitraum nur eine allmähliche Zunahme festzustellen ist, zeigt die elektrische Leitfähigkeit ebenfalls ein deutlich ausgeprägtes Maximum ca. 8 Stunden nach dem Mischen. Die darauffolgende Abnahme erfolgt, ebenso wie die Festigkeitszunahme, langsamer als im MCC-P+Z. Zum Ende des Beobachtungszeitraums ist die elektrische Leitfähigkeit für LCC-P+Z (F) höher als bei MCC-P+Z (F). Der nach dem Mischen gemessene pH-Wert (< 11) des LCC-P+Z F ist niedriger als bei MCC-P+Z und steigt nur allmählich an.

Für **LCC-A** ist die Ruhephase zwischen den beiden Verfestigungsschritten gegenüber dem entsprechenden MCC verlängert, für den **LCC-A F** dagegen verkürzt. Die elektrische Leitfähigkeit ist nach dem Mischen niedriger als bei den entsprechenden MCC. Der zeitliche Verlauf ist für LCC-A ähnlich dem für MCC-A, für MCC-A F erfolgt die mit der ersten Verfestigung korrelierte Abnahme später, der der Hydratation zugehörige Abfall, entsprechend der früheren zweiten Verfestigungsstufe, früher. Auch der pH-Wert steigt früher an. Hier konnte der Einfluss der Fasern nicht schlüssig aufgeklärt werden.

Die geringere erreichte Festigkeit des LCC gegenüber den entsprechenden MCC ist durch die geringere Menge hydratisierbarer Zementphasen zu erklären. Dadurch gehen zu Beginn auch weniger Ladungsträger in Lösung (→niedrigere elektrische Leitfähigkeit) und es dauert länger, bis die Ca²+Konzentration im Porenwasser ausreichend hoch ist, um die Sammel-Kristallisation von Hydratphasen auszulösen (→spätere Verfestigung).

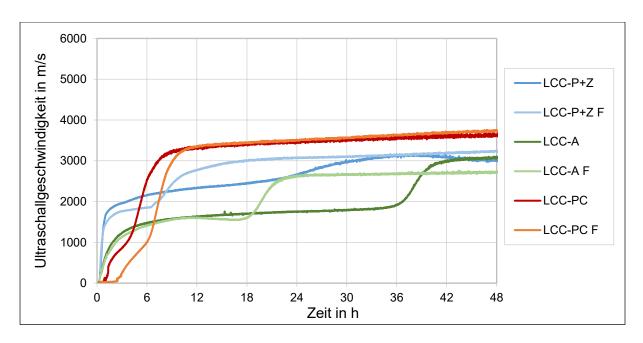


Bild 26: Ultraschallmessungen an LCC mit verschiedenen Verflüssigern. Charakteristische Festigkeitsentwicklung für LCC-P+Z: schnelles Ansteifen wenige Minuten nach Mischende, anschließend allmählich weiter ansteigend, ca. 12-24 Stunden nach dem Mischende beschleunigte Verfestigung. Nach 30-42 Stunden leicht abfallender Kurvenverlauf. Mit Fasern (LCC-P+Z F) ca. 4 Stunden Ruhephase nach dem ersten Ansteifen, dann Einsetzen einer zweiten Verfestigungsstufe. LCC-A: erste Verfestigung wenige Minuten nach Mischende, aber langsamer als bei LCC P+Z, nach ca. 6 Stunden Übergang in Ruhephase, nach ca. 27-39 Stunden Einsetzen einer zweiten Verfestigungsstufe, bei LCC-A F setzt die zweite Verfestigungsstufe bereits nach ca. 18 Stunden ein. LCC-PC und LCC-PC F: zu Beginn kurze Ruhephase, ca. 1 bzw. 2,5 Stunden nach dem Mischende erste Verfestigung. Zwischen 2 und 4 Stunden nach Mischende langsame, anschließend rasche und stetige Verfestigung. Für das nach 48 Stunden erreichte Festigkeitsniveau gilt PC > P+Z > A.

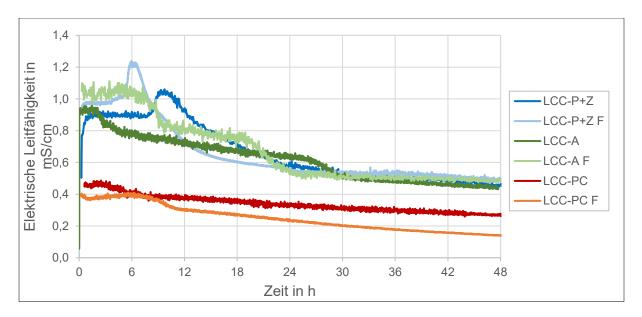


Bild 27: Leitfähigkeitsmessungen von LCC mit verschiedenen Verflüssigern. Charakteristische Kurvenverläufe für LCC-P+Z und LCC-P+Z F: nach Mischende rasch zunehmende Leitfähigkeit, nach ca. 1 Stunde Übergang zu Ruhephase mit gleichbleibender Leitfähigkeit. Dem Abfall der Leitfähigkeit nach 9 Stunden (LCC P+Z) bzw. 6 Stunden (LCC-P+Z F) geht eine kurzzeitige Erhöhung voraus. Die Geschwindigkeit der Leitfähigkeitsabnahme verringert sich dabei stetig. Für LCC-P+Z verringert sich die Leitfähigkeit langsamer als für LCC-P+Z F. LCC-A und LCC-A F: zu Beginn ca. 2 Stunden (LCC-A) bzw. 6 Stunden (LCC-A F) währende Phase gleichbleibend hoher elektr. Leitfähigkeit, dann in zwei Stufen abfallend. 1.Stufe: ca. 2 − 5 Stunden (LCC-A) bzw. ca. 6 − 9 Stunden (LCC-A F) nach Mischende. 2. Stufe: 26 − 30 Stunden (LCC-A) bzw. 19 − 23 Stunden (LCC-A F) nach Mischende. LCC-PC und LCC-PC F: ausgehend von geringer Leitfähigkeit unmittelbar nach Mischende nimmt diese zunächst leicht zu, nach ca. 3 Stunden (LCC-PC) bzw. 9 Stunden (LCC-PC F) beginnt die Leitfähigkeit abzunehmen. Für die Leitfähigkeit nach 48 Stunden gilt P+Z ≥ A > PC.

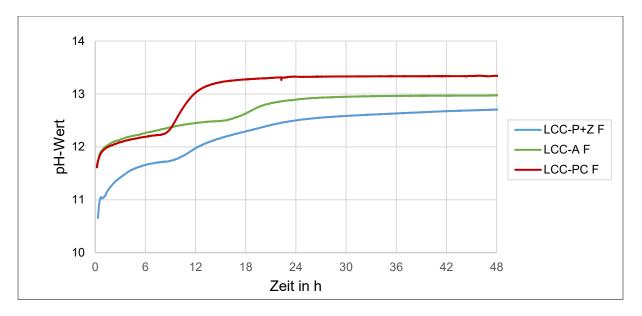


Bild 28: Entwicklung des pH-Werts von LCC mit Fasern und verschiedenen Verflüssigern. Bei allen Verflüssigern beginnt die pH-Wert-Entwicklung mit einem raschen Anstieg unmittelbar nach Mischende, gefolgt von einer Ruhephase, während der pH-Wert nur langsam zunimmt. Darauf folgt ein zweiter schnellerer Anstieg. Charakteristische Kurvenverläufe für LCC-P+Z F: erster Anstieg geht in kurze Ruhephase bei pH 11,7 über. Zweiter Anstieg ab 9 Stunden mit allmählich abnehmender Geschwindigkeit. Nach 24 Stunden ist der pH-Wert 12,5 erreicht, nach 48 Stunden pH 12,7. LCC-A F: während der Ruhephase langsamer Anstieg auf pH 12,5, schnellerer Anstieg im Zeitraum 16 bis 21 Stunden nach Mischende, dann allmähliche Annäherung an pH 13,0. LCC-PC F: während der Ruhephase langsamer Anstieg auf pH 12,3 und rascher Anstieg im Zeitraum 8 bis 15 Stunden nach Mischende auf pH 13,3, im weiteren Verlauf stabil.

Die Ergebnisse der Messungen von Ultraschallgeschwindigkeit, elektrischer Leitfähigkeit und pH-Wert an ULCC-P+Z, ULCC-A und ULCC-PC, mit und ohne Zugabe von Fasern sind in Bild 29 bis Bild 31 wiedergegeben. Die im Vorhaben untersuchten ULCC enthalten nur 2 % Zement. Daher sind Veränderungen der Festigkeit, der elektrischen Leitfähigkeit und des pH-Wertes, die mit der Hydratation der Zementphasen in Zusammenhang stehen, nur schwach ausgeprägt. Bei ULCC-P+Z und ULCC P+Z F steigt die Ultraschallgeschwindigkeit, ebenso wie bei den entsprechenden LCC und MCC-Feuerbetonen, nach dem Mischen rasch auf ca. 2000 m/s an. Im Gegensatz zu Feuerbetonen mit höherem Zementanteil ist bei den ULCC aber keine zweite Verfestigungsstufe feststellbar. Wie die LCC mit gleichem Verflüssiger zeigen auch ULCC-PC und ULCC-PC F ein frühes erstes Ansteifen, das in die Hydratationsphase übergeht. Die bereits beim LCC im Vergleich zum MCC verkürzte anfängliche Ruhephase ist beim ULCC-PC nicht mehr erkennbar. Bei ULCC-A und ULCC-A F wird, ebenso wie bei den entsprechenden LCC und MCC, ein frühes Ansteifen beobachtet. Wie bei ULCC-P+Z und ULCC-P+Z F bleibt die bei höherem Zementanteil beobachtete zweite Verfestigungsstufe aber aus. Im Vergleich liegen die Festigkeiten der ULCC nach 48 Stunden niedriger als die der LCC und MCC.

Die zeitliche Änderung der elektrischen Leitfähigkeit ist bei den ULCC weniger stark ausgeprägt als bei den MCC und LCC, dabei zeigen sich deutliche Unterschiede zwischen Feuerbetonen mit und ohne Faserzusatz. Sowohl beim ULCC-A F als auch beim ULCC-PC F ist in den ersten 24 Stunden nach dem Mischen eine Zunahme der elektrischen Leitfähigkeit erkennbar, während die entsprechenden faserfreien Feuerbetone mit abnehmender Leitfähigkeit nach 3 Stunden (ULCC-A) bzw. 5 Stunden (ULCC-PC) eine ähnliche Entwicklung zeigen wie die Feuerbetone mit höherem Zementgehalt. Die Ergebnisse der Messungen der Entwicklung des pH-Werts entspricht weitgehend den Ergebnissen der Messungen für MCC und LCC. Die anfängliche Zunahme des pH-Wertes von ca. 11,5 auf ca. 12,5 fällt mit dem Zeitraum der durch die rasch zunehmende Ultraschallgeschwindigkeit indizierten Festigkeitsentwicklung innerhalb der ersten Stunde nach dem Mischen zusammen. Beim ULCC-P+Z nimmt der pH-Wert nach ca. 5 Stunden nochmals, zu bei gleichzeitigem Abfall der elektrischen Leitfähigkeit. Auch beim ULCC-A wird eine weitere Erhöhung des pH-Wertes beobachtet, der nach ca. 20 Stunden auftritt, während die Ultraschallgeschwindigkeit und die elektrische Leitfähigkeit in diesem Zeitraum keine signifikante Veränderung zeigen.

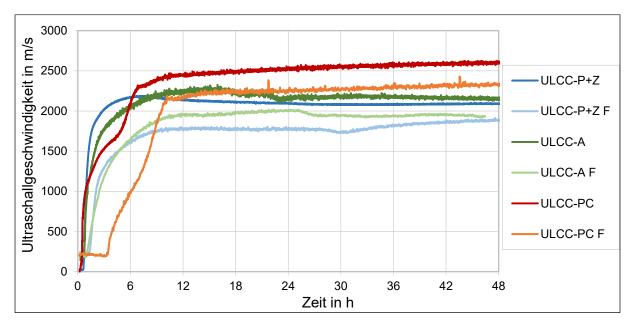


Bild 29: Ultraschallmessungen von ULCC mit verschiedenen Verflüssigern. Die Festigkeit der faserhaltigen ULCC ist geringer als die der faserfreien ULCC. ULCC-P+Z (F): zu Beginn kurze Ruhephase, nach ca. 40 Minuten schnelle Verfestigung, nach ca. 1,5 Stunden verlangsamt sich die Festigkeitszunahme, nach 3 Stunden nur noch geringe Steigerung. Nach 10 Stunden leicht abfallend. Für den faserhaltigen Feuerbeton nimmt die Festigkeit langsamer zu und bleibt nach ca. 9 Stunden zunächst stabil. Ca. 30 Stunden nach dem Mischen durchläuft die Messkurve ein schwach ausgeprägtes Minimum, danach steigt die Festigkeit nochmals leicht an. ULCC-A (F): zu Beginn kurze Ruhephase, nach ca. 40 Minuten zunächst schnelle, allmählich langsamer werdende Verfestigung, nach ca. 3 Stunden nur noch geringe Festigkeitszunahme. Nach ca. 23-25 Stunden kurzzeitig leichte Verringerung der Festigkeit, dann stabil. Für den faserhaltigen Feuerbeton tritt die kurzzeitige Verringerung später auf. ULCC-PC: ca. 30 Minuten nach dem Mischende schnelle erste Verfestigung, verlangsamt nach ca. 1 Stunde, zweite Verfestigungsstufe setzt nach ca. 5 Stunden ein. Nach 7 Stunden Übergang zu nur noch geringer Festigkeitssteigerung. Für den faserhaltigen Feuerbeton wird zu Beginn eine ca. 3stündige Ruhephase beobachtet, die weitere Festigkeitsentwicklung ist entsprechend zeitlich verschoben. Für das nach 48 Stunden erreichte Festigkeitsniveau gilt abweichend zu MCC und LCC-Mischungen: PC > A > P+Z.

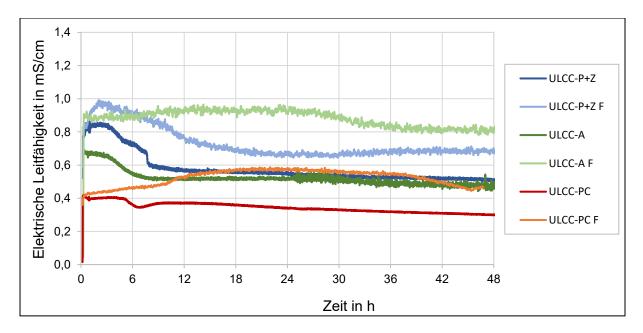


Bild 30: Leitfähigkeitsmessungen von ULCC mit verschiedenen Verflüssigern. Die Messung der Leitfähigkeit von ULCC zeigt deutliche Unterschiede zwischen Mischungen mit und ohne Fasern: ULCC-P+Z: nach Mischende zunehmende Leitfähigkeit, nach ca. 2,5 Stunden beginnt die Leitfähigkeit abzunehmen, nach 4-8 Stunden ist nur noch eine sehr langsame Verringerung der Leitfähigkeit festzustellen. Bei ULCC-P+Z F erstreckt sich die Abnahme der Leitfähigkeit über einen längeren Zeitraum, nach ca. 30 Stunden nimmt die elektr. Leitfähigkeit wieder zu. ULCC-A: zu Beginn ca. 3 Stunden stagnierende Leitfähigkeit, dann abfallend, ca. 8 Stunden nach Mischende wieder stagnierend, nach ca. 28 Stunden wieder leicht abnehmende Leitfähigkeit. ULCC-A F: nach Mischende zunächst gleichbleibende, dann langsam ansteigende Leitfähigkeit. Nach ca. 24 Stunden zunächst rasche, nach ca. 32 Stunden nur noch langsame Abnahme der Leitfähigkeit. ULCC-PC: ausgehend von geringer Leitfähigkeit fällt diese zunächst leicht ab und bleibt dann stabil. Nach ca. 4 Stunden nimmt die Leitfähigkeit kurzzeitig leicht ab, steigt nach 7 Stunden wieder an und geht dann in eine Phase langsamer Abnahme über. ULCC-PC F: Die Leitfähigkeit steigt zunächst langsam, nach ca. 10 Stunden etwas schneller an. Nach ca. 20 Stunden ist eine allmähliche Abnahme zu erkennen. Für die Leitfähigkeit nach 48 Stunden gilt A ≥ P+Z > PC.

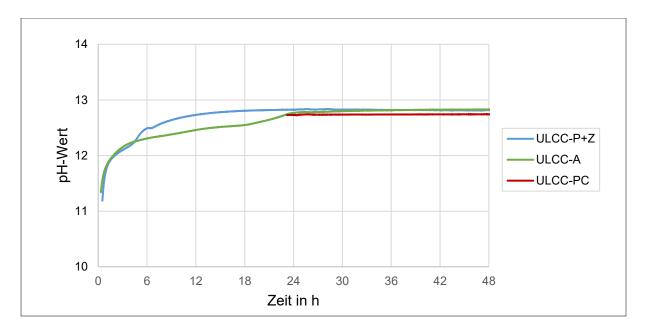


Bild 31: Entwicklung des pH-Werts von ULCC mit verschiedenen Verflüssigern. Bei allen verwendeten Verflüssigern steigt der pH-Wert-unmittelbar nach Mischende rasch an. Zum Ende des Beobachtungszeitraums wird ein pH-Wert von 12,7-12,8 erreicht. Charakteristische Kurvenverläufe ULCC-P+Z: Der zuerst rasche, dann allmählich langsamer werdende Anstieg des pH-Werts ist unterbrochen von einer verzögerten Entwicklung zwischen 1 und 4 Stunde nach Mischende. ULCC-A: Anfangs schnelle pH-Wert-Zunahme geht in langsame, annähernd lineare Steigerung über. Im Zeitraum 18 bis 24 Stunden beschleunigt sich die Zunahme. ULCC-PC: Wegen technischem Defekt wurden in den ersten 23 Stunden der Messung keine Daten aufgezeichnet. Der erreichte Endwert entspricht dem der anderen ULCC.

5.2.2. Technologische Eigenschaften: Biegezugfestigkeit, offene Porosität und Porengrößenverteilung nach Trocknung und nach Brand (HS Koblenz)

Die technologischen Eigenschaften der entwickelten Modell-Feuerbetone wurden nach dem Trocknen (24 Stunden bei 110 °C) und nach anschließendem Brennen untersucht. Gebrannt wurde in zwei Stufen: 1) Heizrate: 2 K/min, Haltezeit: 5 Stunden bei 550 °C; 2) Heizrate: 5 K/min, Haltezeit: 2 Stunden bei 1000 °C.

KBF (Biegezugfestigkeit bei Raumtemperatur) nach DIN EN 993-6

Die Biegezugfestigkeit wurde nach DIN EN 993-6 mit einem abweichenden Auflagenabstand von 140 mm ermittelt. Die Ergebnisse sind in Bild 32 bis Bild 35 zusammengefasst. Nach Trocknung und nach Brand und mit und ohne Zusatz von Fasern erhöht sich die Biegezugfestigkeit mit steigendem Zementgehalt der Feuerbetonmischung. Die verwendeten Verflüssiger steigern die Biegefestigkeit im getrockneten und gebrannten Zustand, dies führt dazu, dass getrocknete LCC bei um 75 % reduziertem Zementgehalt ähnliche Biegefestigkeiten aufweisen wie getrocknete RC. Faserhaltige Feuerbetone weisen im getrockneten und gebrannten Zustand eine geringere Biegezugfestigkeit auf als die vergleichbaren Feuerbetone ohne Fasern (Bild 33 und Bild 35). Eine Ausnahme bilden hier die mit Polycarboxylatether verflüssigten Feuerbetone, bei denen die Zugabe von Fasern keinen Einfluss auf

die Biegefestigkeit hat. Nach dem Brennen bei 1000 °C ist bei den faserfreien Feuerbetonen, die mit Natriumpolyphosphat und Zitronensäure verflüssigt wurden, nur im ULCC eine verringerte Biegezugfestigkeit zu erkennen. Bei Versätzen mit Polycarboxylatether dagegen zeigt sich eine Verringerung im LCC und MCC, und bei Acrylat-verflüssigten Mischungen nur im MCC (Bild 34).

Davon abweichend zeigen faserhaltige Versätze, die mit Natriumpolyphosphat verflüssigt wurden, bei jedem Zementgehalt nach dem Brand eine reduzierte Biegefestigkeit, mit Polycarboxylatether oder Acrylat verflüssigte Versätze nur bei höherem Zementgehalt (LCC und MCC, Bild 35).

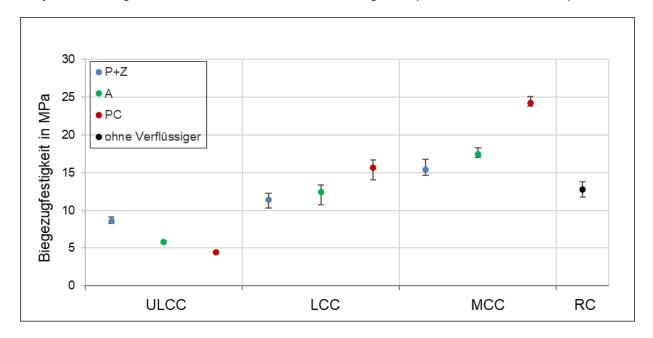


Bild 32: Biegezugfestigkeit der Modell-Feuerbetone ohne Fasern nach Trocknung (24 h bei 110 °C). Die Biegezugfestigkeit steigert sich mit zunehmendem Zementgehalt. Zusätzlich erhöhen auch die zugesetzten Verflüssiger die Biegezugfestigkeit und führen bereits bei LCC zu ähnlichen Werten wie beim RC mit dem 4fachen Zementgehalt.

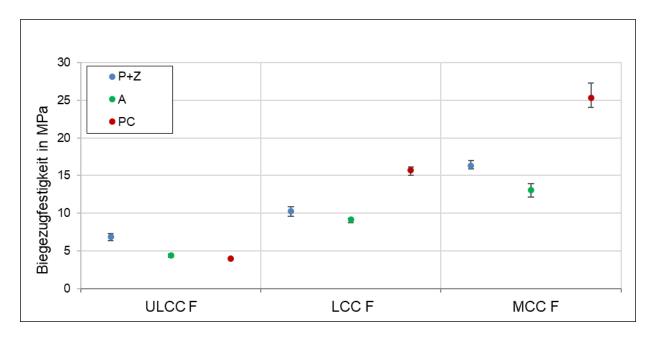


Bild 33: Biegezugfestigkeit der Modell-Feuerbetone mit Fasern nach Trocknung (24 h bei 110 °C). Bei Zugabe von 0,1 Ma.-% Fasern werden bei Verflüssigung mit Acrylat oder Phosphat und Zitronensäure geringere Biegezugfestigkeiten erreicht als bei faserfreien Versätzen. Bei mit Polycarboxylatether verflüssigten Mischungen hat die Faserzugabe keinen Einfluss auf die Biegezugfestigkeit.

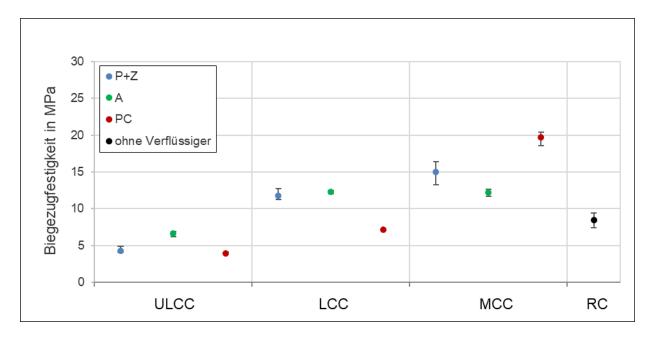


Bild 34: Biegezugfestigkeit der Modell-Feuerbetone ohne Fasern nach Brand (2 h bei 1000 °C). Auch nach dem Brand weisen die verflüssigten Feuerbetone eine mit dem ursprünglichen Zementgehalt zunehmende Biegefestigkeit auf.

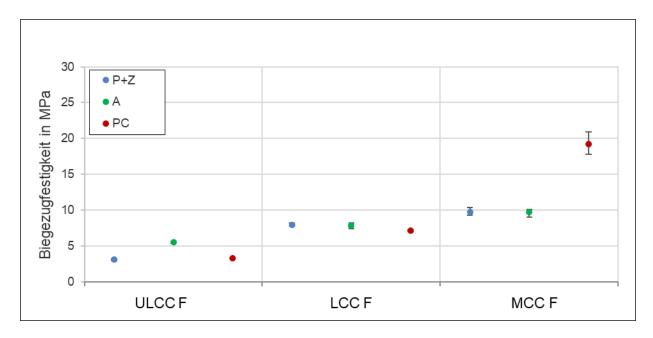


Bild 35: Biegezugfestigkeit der Modell-Feuerbetone mit Fasern nach Brand (2 h bei 1000 °C). Die mit Acrylat oder Phosphat und Zitronensäure verflüssigten LCC und MCC zeigen eine niedrigere Biegezugfestigkeit als die entsprechenden faserfreien Mischungen, bei ULCC und allen mit Polycarboxylatether verflüssigten Mischungen ist kein Einfluss der Faserzugabe zu erkennen.

Offene Porosität

Die offene Porosität (OP) wurde in Anlehnung an DIN EN 1927-5 / DIN EN 1927-6 und ISO 5017 über die Wasseraufnahme (WA) und die Rohdichte (RD) ermittelt. Die Ergebnisse sind in Bild 36 bis Bild 41 zusammengestellt.

Bei den in Bild 36 dargestellten Werte der offenen Porositäten von MCC nach Trocknung (24 Stunden bei 110°C) dominiert der Einfluss unterschiedlicher Wasserzugaben. Ein Vergleich der Porositätswerte der ULCC und LCC (Wasserzugabe LCC-A 5,2 %, alle weiteren ULCC und LCC 5,4 %) zeigt jedoch, dass ein höherer Zementgehalt bei allen drei erprobten Verflüssigern zu einer Abnahme der offenen Porosität der bei 110 °C getrockneten Materialien führt. Diese Tendenz ist bei Mischungen mit PC als Verflüssiger stärker ausgeprägt als bei den mit A oder P+Z verflüssigten Mischungen. Der Vergleich der Porositäten der faserhaltigen Modell-Feuerbetone (Bild 38) bestätigt diese Beobachtung: Mit A oder P+Z verflüssigte MCC zeigen bei geringerer Wasserzugabe eine niedrigere Porosität als die entsprechenden LCC und ULCC. Die Abnahme der Porosität bei höherem Zementgehalt ist bei Mischungen mit PC als Verflüssiger durch die gleichzeitig reduzierte Wasserzugabe verstärkt. Im getrockneten Feuerbeton mit Fasern ist die offene Porosität gegenüber den entsprechenden faserfreien Versätzen in der Regel erhöht. Die naheliegende Ursache ist die erhöhte Wasserzugabe. Dem entsprechen auch die Tendenzen bei mit PC verflüssigten Mischungen: Der LCC zeigt bei vermindertem Wassergehalt auch eine verminderte Porosität, der MCC bei leicht erhöhtem Wassergehalt eine unveränderte Porosität.

Durch das Brennen bei 1000 °C zersetzen sich die gebildeten Hydratphasen und lassen zusätzliche Porosität zurück. Je höher der Zementanteil in der Feuerbetonmischung, desto dichter ist der Feuerbeton nach der Trocknung und desto mehr neue Porosität entsteht beim Brennen. Die nach dem Trocknen noch unterschiedlichen Porositäten der verflüssigten Modell-Feuerbetone sind nach dem Brand weitgehend angeglichen (Tabelle 13 sowie Bild 37 und Bild 39). Die noch bestehenden Unterschiede korrelieren in faserfreien Feuerbetonen mit Menge des beim Mischen zugegebenen Wassers, unabhängig von Zementgehalt und Art des Verflüssigers (Bild 40). Bei faserhaltigen Feuerbetonen ist dieser Zusammenhang nicht eindeutig erkennbar (Bild 41).

Tabelle 13: Offene Porositäten getrocknet (24 h bei 110 °C) und gebrannt (2 h bei 1000 °C).

	Offene Porosität in %			Offene Porosität in %			
Feuerbeton	getrocknet	gebrannt	Zunah-	Feuerbeton	getrocknet	gebrannt	Zu-
			me				nahme
RC	11,9	25,7	13,8				
MCC-P+Z	12,4	20,1	7,7	MCC-P+Z F	14,5	22,2	7,7
MCC-A	13,3	19,5	6,2	MCC-A F	15,4	21,9	6,5
MCC-PC	5,0	15,9	10,9	MCC-PC F	4,6	18,0	13,4
LCC-P+Z	14,3	18,7	4,4	LCC-P+Z F	16,3	20,3	4,0
LCC-A	12,9	17,2	4,3	LCC-A F	16,3	19,9	3,6
LCC-PC	10,9	17,5	6,6	LCC-PC F	8,9	17,7	8,6
ULCC-P+Z	16,9	18,4	1,5	ULCC-P+Z F	19,2	21,1	1,8
ULCC-A	15,9	17,8	1,9	ULCC-A F	19,0	20,3	1,3
ULCC-PC	15,6	18,0	2,4	ULCC-PC F	16,6	18,3	1,7

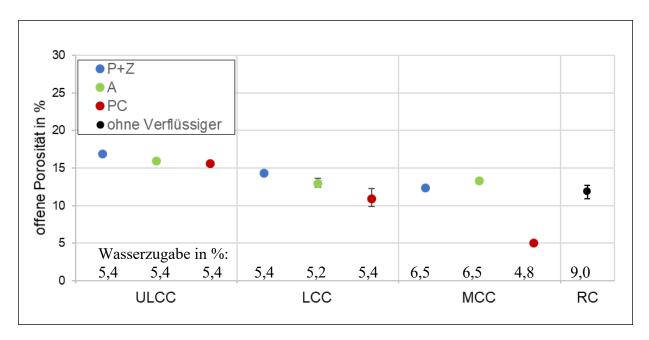


Bild 36: Offene Porosität der Modell-Feuerbetone nach Trocknung (110 °C, 24 h). Die offene Porosität getrockneter Proben nimmt mit steigendem Zementgehalt ab, Diese Entwicklung ist bei MCC überlagert durch stark abweichende Wasserzugaben.

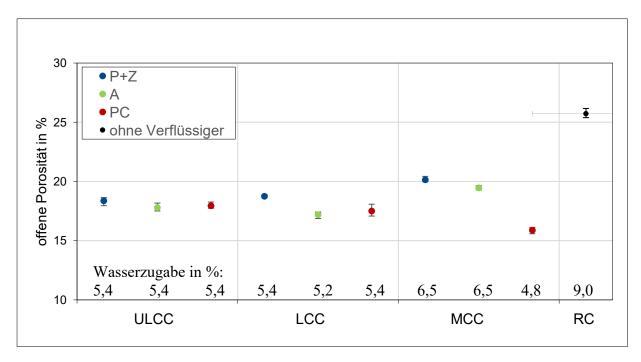


Bild 37: Offene Porosität faserfreier Modell-Feuerbetone nach Brand (1000 °C, 2 h). Nach Zersetzung der Hydratphasen beim Brennen sind die Porositätswerte unabhängig vom ursprünglichen Zementgehalt und verwendeten Verflüssiger weitgehend angeglichen.

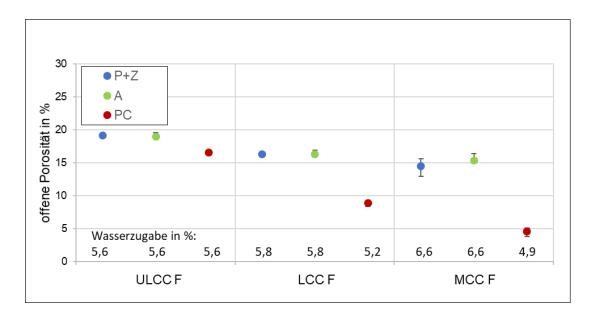


Bild 38: Offene Porosität faserhaltiger Modell-Feuerbetone nach Trocknung (110 °C, 24 h): Die mit Fasern versetzten Feuerbetone zeigen, mit Ausnahme der mit PC verflüssigten, bereits im getrockneten Zustand eine höhere Porosität als faserfreie Feuerbetone. Diese Veränderungen in der offenen Porosität korrelieren mit den veränderten Wasserzugaben beim Mischen.

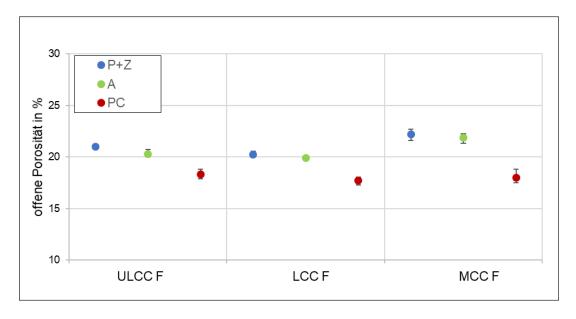


Bild 39: Offene Porosität faserhaltiger Modell-Feuerbetone nach Brand (1000 °C, 2 h). Nach Zersetzung der Hydratphasen beim Brand sind die Porositätswerte unabhängig vom ursprünglichen Zementgehalt und verwendeten Verflüssiger weitgehend angeglichen. Im Vergleich zu den entsprechenden faserfreien Feuerbetonen ist für mit A oder P+Z verflüssigte Mischungen eine höhere offenen Porosität feststellbar, bei Polycarboxylatether trifft dies nur für den MCC zu.

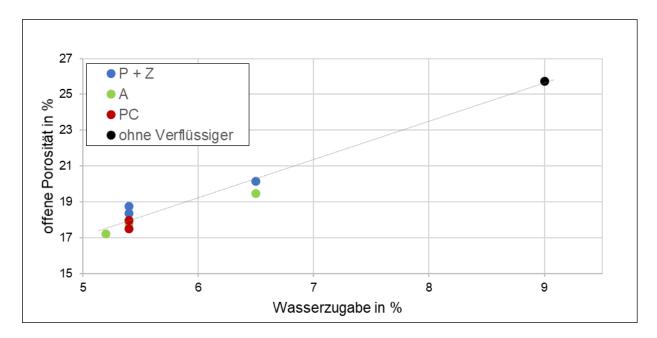


Bild 40: Offene Porosität faserfreier Modell-Feuerbetone nach dem Brand in Abhängigkeit von der Wasserzugabe beim Mischen. Unabhängig vom zugesetzten Verflüssiger und dem Zementgehalt der Modell-Feuerbetone steigt die offene Porosität nach Brand mit der beim Mischen zugegebenen Wassermenge.

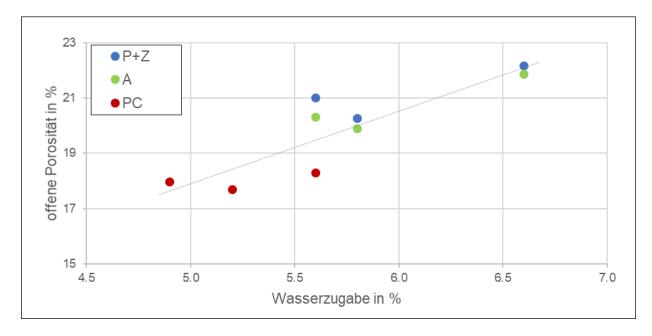


Bild 41: Offene Porosität faserhaltiger Modell-Feuerbetone nach dem Brand in Abhängigkeit von der Wasserzugabe beim Mischen. Die Relation zwischen der zugegebenen Wassermenge und der nach dem Brand gemessenen offenen Porosität ist überlagert vom Einfluss der Fasern.

Porengrößenverteilung

Die Porengrößenverteilungen der entwickelten Modell-Feuerbetone wurden mittels Quecksilber-Druckporosimetrie nach DIN 66133 an Proben nach dem Abbinden und anschließender Vakuumtrocknung bestimmt. Die Porengrößenverteilungen nach dem Abbinden sind in Abschnitt 5.8.5 zusammen mit den Ergebnissen nach Temperaturbehandlung der Feuerbetone dargestellt.

5.2.3. REM-Untersuchung der Hydratphasenmorphologie nach Hydratation (HS Koblenz)

Die Gefüge der entwickelten Modell-Feuerbetone wurden mit hochauflösender Feldemissions-Rasterelektronenmikroskopie (FE-REM) nach einer Abbindezeit von 48 Stunden im Klimaschrank bei 20 °C mit anschließender Gefriertrocknung untersucht. Der Schwerpunkt lag auf der Beschreibung der Morphologie (Größe, Tracht und Habitus) der gebildeten Zementhydratphasen-Kristalle sowie ihrer räumlichen Vernetzung, der Porosität und der Einbindung der PP-Fasern im Gefüge. Beispielhalft für die verflüssigten Feuerbetone sind hier REM-Aufnahmen von MCC-Feuerbetonen mit und ohne Fasern neben dem verflüssigerfreien Referenzfeuerbeton RC dargestellt.

Im Wesentlichen wird deutlich, dass die vorherrschenden Hydratphasen entweder hexagonale Tafeln oder kurzprismatische bis hin zu stängelige Kristallformen ausbilden. CAH₁₀ und C₂AH₈ bilden tafelige Kristalle mit hexagonaler bzw. pseudohexagonaler Symmetrie. Eine Unterscheidung ist hier oftmals nicht ohne weiteres möglich. Allerdings wurde mit RBA (siehe Kapitel 5.8.1) nur CAH₁₀ aber kein-C₂AH₈ nachgewiesen. Der im monoklinen Kristallsystem kristallisierende Gibbsit (AH₃) bildet in der Regel kurzprismatische bis stängelige, pseudohexagonale, idiomorphe Kristalle und ist dadurch gut von den beiden CAH-Phasen zu unterscheiden. CAH₁₀ und C₂AH₈ sind metastabile Phasen, die sich bei Raumtemperatur langsam in Katoit (C₃AH₆) umwandeln. Findet die Hydratation bei höherer Umgebungstemperatur statt, wird vorherrschend Katoit direkt gebildet. In idiomorpher Form bildet Katoit isometrische Kristalle mit rhombendodekaedrischer Tracht {110} aus. Durch Vakuumtrocknung wurde der Hydratationsprozess der untersuchten Feuerbetone nach 48 Stunden abgebrochen. Daher wurde die Ausbildung idiomorpher C₃AH₆-(Katoit-)Kristalle unterbunden.

Im **RC** zeigt sich ein heterogenes Bild der gebildeten Hydratphasen. Je nach betrachteter Position sind vorherrschend feinkristalline, stängelige und größere garbenförmig verwachsene Kristalle erkennbar, die auf Gibbsit hindeuten (Bild 42a) oder große, dünntafelige Kristalle (Bild 42b), wie sie für CAH₁₀ zu erwarten sind.

In **Acrylat**-verflüssigten **MCC-A**-Feuerbeton sind garbenförmig angeordnete, langprismatische Kristalle in einer feinkörnigen Matrix zu erkennen. Nur bei starker Vergrößerung sind auch wenige, kleine tafelförmige Kristalle sichtbar. In Übereinstimmung mit den Ergebnissen der Röntgenbeugungsanalyse (Abschnitt 5.7.1) werden diese den geringen Mengen an gebildeten Hydratphasen Gibbsit bzw. CAH₁₀ zugeordnet.

Bei der gleichen Temperatur und Vergrößerungsstufe zeigt der mit **Natriumpolyphosphat und Zitronensäure** verflüssigte **MCC-P+Z**-Feuerbeton überwiegend homogen verteilte prismatische, aber auch große tafelförmige Kristalle, sowie eine Matrix, die teilweise durch eine gelartige Phase verdichtet ist. Wie für MCC-A werden die kristallinen Phasen als CAH₁₀ und Gibbsit interpretiert, die hier aber in größerer Menge gebildet wurden. Bei dem die Matrix verdichtenden Gel handelt es sich vermutlich um amorphes AHx-Gel. Aus der Röntgenphasenanalyse (siehe Abschnitt 5.7.1) ist hier auch abzuleiten, dass in geringen Mengen C₃AH₆ (Katoit) vorhanden ist. Idiomorphe Kristallindividuen (Rhombendodekaeder) sind aber nicht erkennbar, was vermutlich darauf zurückzuführen ist, dass Katoit pseudomorph nach den zuerst gebildeten tafeligen Phasen CAH₁₀ oder C₂AH₈ vorliegt.

In **MCC-PC** sind sehr kleine prismatische Kristalle (Gibbsit) nur bei höherer Vergrößerung sichtbar. Sie dominieren aber den gesamten abgebildeten Bereich. Größere tafelförmige Kristalle (→CAH₁₀) sind nur an wenigen, isolierten Stellen im Feuerbeton zu erkennen. Wie bei MCC-P+Z erfolgte auch hier der Nachweis von Katoit anhand einer Röntgenphasenanalyse, was wiederum den Schluss zulässt, dass Katoit pseudomorph nach CAH₁₀ oder C₂AH₈ vorliegt.

Deutliche Unterschiede sind zwischen den **faserhaltigen** und den entsprechenden faserfreien Feuerbetonen zu erkennen. Im MCC-A mit Fasern sind prismatisch ausgebildete Kristalle wesentlich größer als in faserfreiem MCC-A und und sie bilden garbenförmige Aggregate. Bei MCC-P+Z und MCC-PC mit Fasern zeigt das zuvor gelförmig in Erscheinung tretende AHx, erkennbar an den Schwindrissen, eine einsetzende Kristallisation zu Gibbsit. Prismatische Kristalle sind hier nicht zu erkennen. Gibbsit zeigt sich als feinstkörnige kristalline Ausscheidungen an der Oberfläche.

Die Einbettung von Fasern im Gefüge zeigen Bild 48 und Bild 49 am Beispiel von MCC-A und LCC-A: Das Matrixgefüge schließt nicht unmittelbar an die eingebetteten Fasern (in dieser Darstellung blau eingefärbt) an. Im Grenzbereich zwischen Fasern und Matrix ist eine erhöhte Porosität erkennbar.

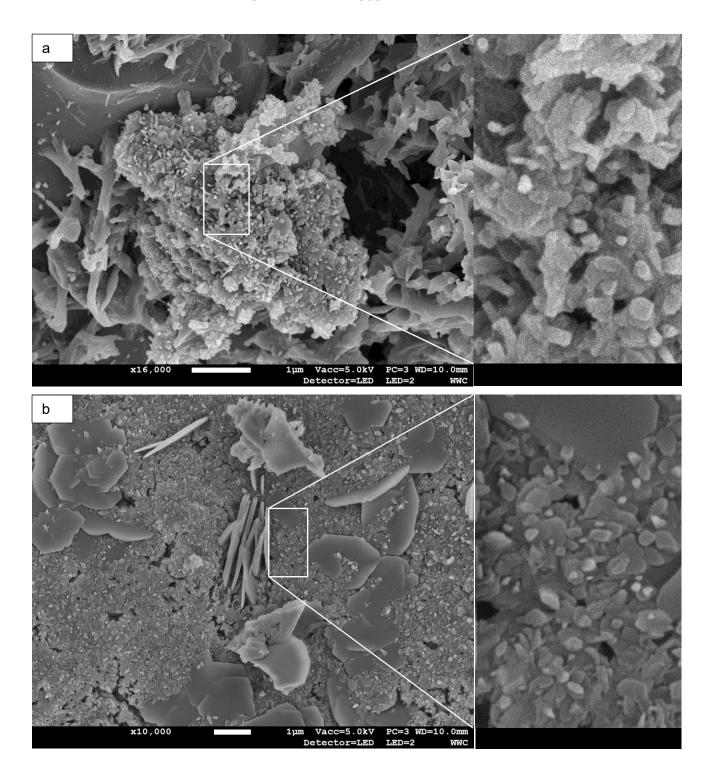


Bild 42: RC nach 48 Stunden Hydratation. Garbenförmig miteinander verwachsene Kristalle dominieren den Rand des Bildes a). Bei stärkerer Vergrößerung sind in der Bildmitte auch sehr kleine (<150 nm), langprismatische Kristalle erkennbar. Dagegen sind in b) große, tafelige Kristalle zu erkennen, bei höherer Vergrößerung werden auch hier sehr kleine Kristalle mit tafeligem Habitus sichtbar.

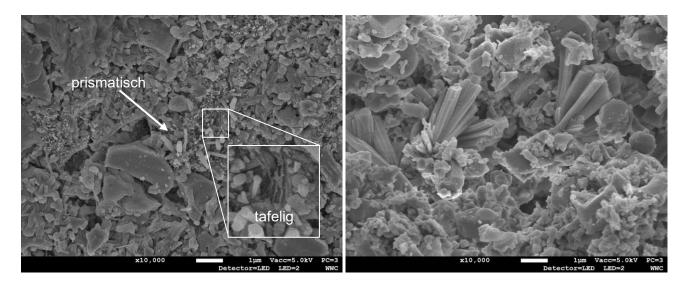


Bild 43: MCC-A nach 48 h Abbinden. Cluster Bild 44: stängeliger, prismatischer Kristalle (Gibbsit), in stärkerer Vergrößerung sind wenige tafelige Kristalle (CAH₁₀) erkennbar.

MCC-A mit Fasern nach 48 h Abbinden. Große, garbenförmig verwachsene stängelige Kristalle (Gibbsit).

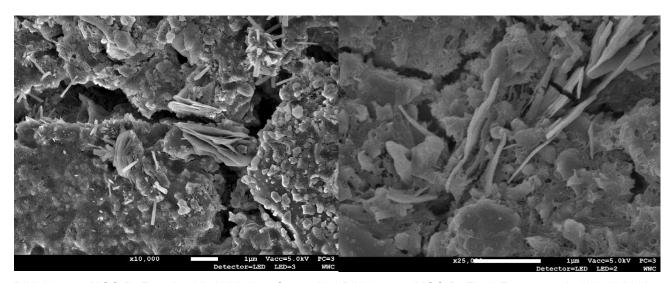


Bild 44: MCC-P+Z nach 48 h Abbinden. Stängelige Bild 45: prismatische Kristalle (Gibbsit) und große dünntafelige Kristalle (CAH10), Matrix teilweise durch gelartige Phase verdichtet.

MCC-P+Z mit Fasern nach 48 h Abbinden Hydratation. Große dünntafelige Kristalle (CAH₁₀). Einsetzende Kristallisation des zuvor gelförmigen zu feinstkristallinem Gibbsit.

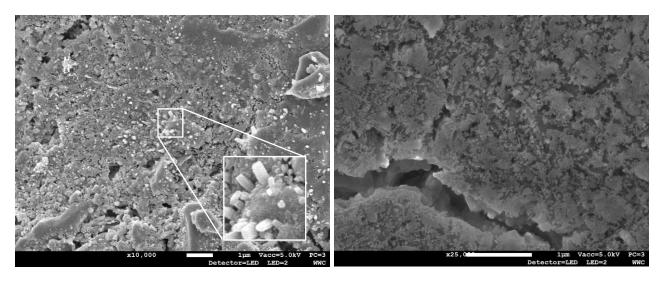


Bild 46: MCC-PC nach 48 h Abbinden. Sehr kleine Bild 47: prismatische Kristallindividuen.

MCC-PC mit Fasern nach 48 h Abbinden. Einsetzende Kristallisation des AHx-Gels zu feinstkristallinem Gibbsit.

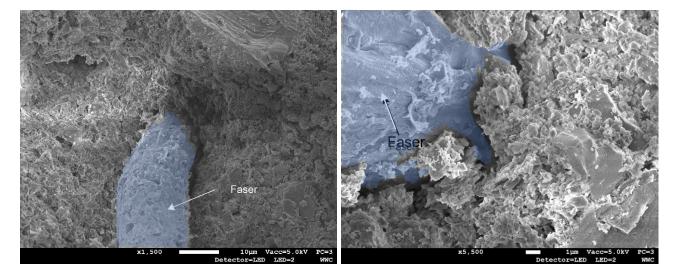


Bild 48: Faser in MCC-A F. Erhöhte Porosität im Bild 49: Grenzbereich zwischen der Faser und der Matrix.

Faser in LCC-A F. Lückenhafte Einbindung der Fasern in das Matrixgefüge.

5.3. Untersuchung der Explosionsneigung der Modell-Feuerbetone (HS Koblenz)

Alle 19 Modell-Feuerbetone wurden auf Explosionsneigung getestet (siehe Kapitel 4.3.3). Alle ULCC-Feuerbetone ohne Fasern haben den Explosionstest nicht bestanden und wurden daher von den weiteren thermischen Untersuchungen ausgenommen.

Tabelle 14: Ergebnisse der Untersuchung auf Explosionsneigung der 19 Modellbetone. Das Untersuchungsergebnis "bestanden" erhalten Prüfkörper, die die Aufheizrate schadensfrei überstehen. Das Untersuchungsergebnis "nicht bestanden" erhalten Feuerbetone, die während der Aufheizung zerstört oder beschädigt werden.

Feuerbeton	Explosionsneigung	Feuerbeton	Explosionsneigung
(ohne Fasern)	bei 10 K/min	(mit Fasern)	bei 10 K/min
RC	bestanden		
MCC-P+Z	bestanden	MCC-P+Z F	bestanden
MCC-A	bestanden	MCC-A F	bestanden
MCC-PC	bestanden	MCC-PC F	bestanden
LCC-P+Z	bestanden	LCC-P+Z F	bestanden
LCC-A	bestanden	LCC-A F	bestanden
LCC-PC	bestanden	LCC-PC F	bestanden
ULCC-P+Z	Nicht bestanden	ULCC-P+Z F	bestanden
ULCC-A	Nicht bestanden	ULCC-A F	bestanden
ULCC-PC	Nicht bestanden	ULCC-PC F	bestanden

5.4. Aufheizverhalten der Modell-Feuerbetone mit MMH-TG (FGF)

Zunächst wurde das Aufheizverhalten des RC untersucht. Dieser Feuerbeton enthält naturgemäß die höchsten Gehalte an Hydratphasen, so dass bei ihrer thermischen Zersetzung intensive MMH-Signale zu erwarten waren. Dies ist hilfreich, um auch die schwächeren Signale und ihrer Zuordnung zu konkreten Phasenumwandlungen zu identifizieren. Die an dem RC ermittelten MMH- und TG-Kurven (bzw. das Auftreten und Intensitäten der Signale darin) dienten somit als Referenz zum Vergleich mit den Ergebnissen der Messungen des Aufheizverhaltens der verflüssigten Feuerbetone.

Anschließend erfolgte die **Bestimmung des pauschalen Einflusses** der Verflüssiger auf das Zersetzungsverhalten der Hydratphasen und somit auf das Entwässerungsverhalten, d.h., die Auswirkung der Verwendung der drei Verflüssiger (Summe aller Mechanismen) in den verflüssigten Feuerbetonen. Denkbar war eine Auswirkung der vom Verflüssiger beeinflussten Morphologie der gebildeten Hydratphasen (direkter Einfluss der Morphologie auf die thermische Stabilität oder indirekter Einfluss der Morphologie über deren Auswirkung auf die Porosität der Feuerbetone) oder ein Einfluss über die speziellen Zersetzungseigenschaften der Spezies der beim Abbinden mit verschiedenen Verflüssigern jeweils gebildeten Hydratphasen. Aus den RBA-Phasenanalysen an den mit den verschiedenen Verflüssigern hergestellten Feuerbetonen hat sich zudem ergeben, dass die Verflüssiger in unterschiedlichem Ausmaß die Hydratation bei 20 °C verzögern, dass sie also den nach dem Abbinden vorliegenden Hydratationsgrad beeinflussen.

Das resultierende Zersetzungsverhalten der Zementhydratphasen (MMH-TG) wurde in den jeweils drei Modifikationen eines Grundversatzes (z. B. MCC-P+Z, MCC-PC, MCC-A) verglichen.

5.4.1. Regular Castable (RC) – Zuordnung der MMH-Signale

Die MMH- und TG-Ergebnisse von Messungen an drei Prüfkörpern aus RC sind in Bild 50 und in Tabelle 15 dargestellt. Sie zeigen eine gute Reproduzierbarkeit. Grundsätzlich korrespondieren die Temperaturintervalle der TG-Kurven, in denen eine beschleunigte Gewichtsabnahme stattfindet, mit den intensiven Signalen in den MMH-Kurven. Dies bestätigt, dass die Signale in den MMH-Kurven mit Entwässerungsreaktionen im Zusammenhang stehen.

Die in den MMH-Kurven auftretenden Signale (Bild 50) folgen einem wiederkehrenden, mehr oder weniger vollständigem Grundmuster mit individuellen Abweichungen für die verschiedenen untersuchten Feuerbetone. Die Signale werden im Folgenden mit S1-S7 bezeichnet. Nicht in allen MMH-Kurven treten alle Signale auf. Die Temperaturen, bei denen sie ihre Minima oder Maxima zeigen, sind in Tabelle 15 aufgelistet, zusammen mit einer Abschätzung ihrer relativen Intensitäten. Die Tabelle enthält auch die Zuordnung der Signale S1-S7 zu konkreten Phasenumwandlungen, die unter Berücksichtigung der Ergebnisse aus dem IGF-Vorhaben 19855N /SIM20/ sowie Literaturangaben zur thermischen Stabilität der Hydratphasen (siehe Kapitel 1.2) auf Basis von Plausibilität erfolgte.

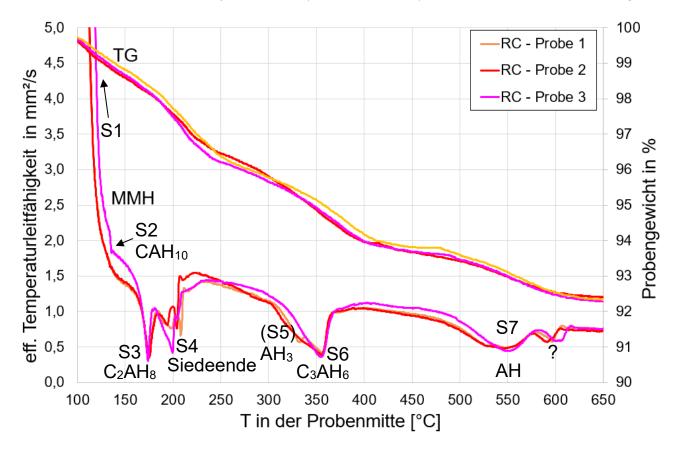


Bild 50: Ergebnisse der MMH- und der TG- Messungen an 3 Prüfkörpern des RC. Aufheizrate: 250 K/h.

Tabelle 15: Relative Intensitäten (x= schwach / xx = mittel / xxx= intensiv) und Temperaturen der Signale in den MMH-Kurven des RC.

Signal	S 1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH_3	C ₃ AH ₆	AH
RC	XXX	(x)	XX	XXX	(x)	XXX	XX
Temperatur °C	~100	136	174	200 - 208	332	355	550

S1: Nachhydratation oder Umwandlung metastabiler CAH-Phasen oder Kristallisation von AH₃ aus AH₃-Gel

Bei S1 handelt es sich um ein äußerst intensives Signal (Maximum, Bild 50) in der MMH-Kurve des RC mit einer exothermen Reaktion als Ursache. Es resultiert auf einem Anstieg der Aufheizrate in der Probenmitte, die zu ansteigenden Werten der effektiven Temperaturleitfähigkeit führt.

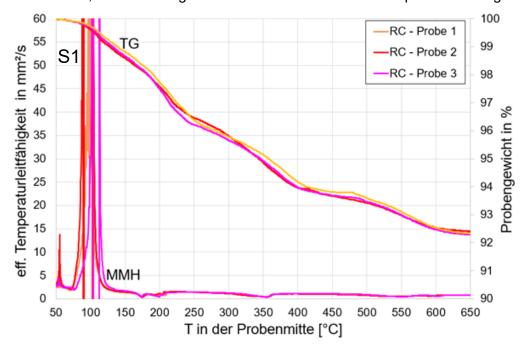


Bild 51: Gleiche Messungen wie in Bild 50 aber mit verlängerter Y-Achse. Hier wird deutlich, wie intensiv (in Relation zu den übrigen Signalen) die exotherme Reaktion S1 bei ca. 100 °C auf die MMH-Kurve einwirkt.

Es sind mehrere exotherme Reaktionen in diesem Temperaturbereich denkbar:

1. Nachhydratation von unreagiertem CA-Zement (CA, CA₂), der während der Abbindezeit im Klimaschrank nicht hydratisiert ist. Wie in Kapitel 1.2.1 beschrieben, können sich gröbere Zementkörner während der Abbindezeit durch dichte Hydrathüllen passivieren, so dass die Hydratation der Zementkörner unterbrochen wird. Bei ansteigenden Temperaturen lösen sich die Passivierungsschichten im noch vorhandenen Porenwasser und die verbliebenen CA-Phasen können dann nachhydratisieren (exotherme Reaktion). Dies erfolgt bei Temperaturen um 100 °C offenbar sehr schnell und die Hydratationswärme beschleunigt den Temperaturanstieg im Prüfkörper während der MMH-Messung.

- 2. Umwandlung metastabiler CAH-Phasen (CAH₁₀, C₂AH₈) in C₃AH₆ + AH₃ + H₂O bei T ~ 100 °C. Im IGF-Vorhaben 19855N /SIM20/ wurde über MMH nachgewiesen, dass die Umwandlungen der metastabilen CAH-Phasen in Feuerbetonen während der Behandlung im Trockenschrank bei 110 °C vollständig abläuft, also ggf. im Temperaturbereich des Signals S1. Auch die RBA-Ergebnisse an Zementsuspensionen (siehe Kapitel 5.1) zeigen, dass nach einer Vorbehandlung bei 110 °C nur noch Katoit als CAH-Phase vorliegt.
- **3.** Kristallisation von amorphem Aluminiumhydroxid AH_x-Gel. Hierbei würde Kristallisationswärme frei. Die Kristallisation von amorphem AH_x-Gel steht daher im Einklang mit der Signalform von S1 (exotherm). Es ist anzunehmen (siehe Kapitel **Fehler! Verweisquelle konnte nicht gefunden w erden.**), dass bei einer Kristallisation von amorphem Aluminiumhydroxid bei ca. 100 °C Gibbsit (AH₃) entsteht. Die Untersuchungen mit Röntgenbeugungsmethoden (RBA) an stufenweise (Tabelle 12) thermisch vorbehandelten Feuerbetonen (siehe Kapitel 5.8.1) ergeben hier kein klares Bild. Kristallines AH₃ (Gibbsit) erhöht sich anhand RBA zwar bei einer Vorbehandlung bei 130 °C im Vergleich zu den Gehalten nach dem Abbinden. Dies kann aber auch durch die Nachhydratation erklärt werden.

Zu dem extrem intensiven Signal S1 im RC gibt es keine korrespondierende, deutliche Gewichtsänderung. Dies ist jedoch verständlich, da über S1 ggf. freiwerdendes Wasser sicher nicht als Dampf, sondern bei Temperaturen um 100 °C und einem erhöhten Druck (hydrothermale Bedingungen in den Feuerbetonen bis Signal S4) in flüssiger Form freigesetzt wird, welches zunächst im Prüfkörper verbleibt.

Ein sehr wichtiges Indiz für die **Zuordnung des Signals S1 zur Nachhydratation** ergibt sich aus den MMH-Untersuchungen an zerkleinerten Feuerbetonen (siehe Kapitel 5.5). Dort wird festgestellt, dass in Abwesenheit von Porenwasser (in den Schüttungen kann es nicht oberhalb 100 °C existieren) kein Signal S1 beobachtet wird, weil naturgemäß keine Nachhydratation stattfinden kann. Im Fall der Kristallisation von AHx-Gel oder der Umwandlung metastabiler CAH-Phasen sollte S1 in den Schüttungen sogar intensiver ablaufen als in den intakten Feuerbetonen, weil in den Schüttungen die Matrix (und in ihr AHx-Gel oder CAH-Phasen) im Vergleich zum intakten Feuerbeton angereichert vorliegen müssen.

Das Auftreten von S2 (selten) und S3 (häufig) ist in den MMH-Kurven der Feuerbetone ein weiterer Hinweis darauf, dass S1 nicht durch die Umwandlung metastabiler CAH-Phasen verursacht wird.

Insgesamt betrachtet sprechen die Argumente für eine Zuordnung des Signals S1 zur Nachhydratation von residualen Zementklinkerphasen CA und CA₂.

S2: CAH10

Eine schwach ausgeprägte Stufe bei 136 °C im Verlauf der MMH-Kurve des RC fällt mit den Literaturangaben zur thermischen Zersetzung von CAH₁₀ zusammen (siehe Kapitel **Fehler! Verweisquelle**

konnte nicht gefunden werden.). Für eine alternative Interpretation gibt es keine konkreten Anhaltspunkte. Aufgrund der sehr geringen Intensität des Signals und der fehlenden Korrespondenz zur TG-Kurve wird hier die Bedeutung von S2 hinsichtlich das Entwässerungsverhaltens zunächst als gering eingestuft.

S3: C2AH8

Ein Minimum bei Temperaturen um 170 °C wurde in den MMH-Kurven wird auf der Basis der Ausführungen in Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.** mit der thermischen Zersetzung von C₂AH₈ interpretiert. Die gleiche Zuordnung des Signals bei ~170 °C erfolgte auch im IGF-Vorhaben 19855N /SIM20/. Nach dem Abklingen von S3 liegt die effektive Temperaturleitfähigkeit auf einem ähnlichen Niveau wie vor dem Signal bzw. es werden die Trends der MMH-Kurven in dem betreffenden Temperaturintervall vor und nach S3 wenig verändert. S3 findet in den RC-Prüfkörpern in einem Temperaturbereich statt, in dem offenbar noch siedendes Porenwasser vorhanden ist (siehe Beschreibung zu S4). Daher wird das bei der Zersetzung von C₂AH₈ freiwerdende H₂O vermutlich zunächst als Wasser in den Porenraum eingebracht. Daher hat die Zersetzung von C₂AH₈ zunächst keinen nachhaltigen Effekt auf die Temperaturleitfähigkeit. Die Porosität vermindert erst dann die Temperaturleitfähigkeit, wenn das bei der Zersetzung der Phase freiwerdende Wasser den Feuerbeton als Dampf verlässt. Da parallel zu S3 (bis zum Erreichen von S4) auch noch Porenwasser siedet und entsprechend Dampf an die Umgebung abgegeben wird, ist die Gewichtsänderung im Zusammenhang mit S3 nicht eindeutig.

S4: Absieden des letzten vorhandenen Porenwassers in der Mitte des Prüfkörpers

Bei Temperaturen unterhalb 100 °C verdunstet Porenwasser (endotherm). Ab 100 °C beginnt das Porenwasser zu sieden (ebenfalls endotherm). Weil die Abgabe von Wasserdampf in Folge der Permeabilität des Feuerbetons begrenzt ist, baut sich ein Druck im Prüfkörper auf, der die Siedetemperatur des verbleibenden Porenwassers erhöht (hydrothermale Bedingungen). Während der Aufheizung erhöht sich daher der Wasserdampf-Partialdruck in den Poren entlang der Dampfdruckkurve von Wasser (Antoine-Gleichung, siehe Bild 4) bis zu der Gleichgewichtstemperatur, bei der schließlich das letzte Porenwasser in der Mitte des zylindrischen, allseitig beheizten MMH-Prüfkörpers abgesiedet ist. Der endotherme Effekt des Verdampfens und Siedens führt zu einem grundsätzlich abfallenden Verlauf der MMH-Kurve. Ist schließlich alles Porenwasser auch in der Mitte des MMH-Prüfkörpers abgesiedet, dann erhöht sich mit der Beendigung des endothermen Prozesses die in der Mitte des Prüfkörpers gemessene Aufheizrate. Dies führt zu dem beobachteten, stufenförmigen Anstieg der effektiven Temperaturleitfähigkeit, das hier als Signal S4 bezeichnet wird. Das annähernd ab der gleichen Temperatur zu beobachtende Abflachen der TG-Kurve ist ein weiteres Indiz zur Interpretation von S4 als Siedeende des Porenwassers, denn mit Ende der Siedephase ist eine verringerte Abdampfrate (flachere TG-Kurve) zu erwarten. Die TG-Kurve flacht bei einer wenig höheren

Temperatur als S4 ab, weil der beim Sieden freigesetzte Wasserdampf zum Verlassen der Probe erst zu dessen Oberfläche diffundieren muss und die Temperatur währenddessen weiter ansteigt.

Bei den RC-Prüfkörpern erfolgt der sprunghafte Anstieg der effektiven Temperaturleitfähigkeit (S4) bei ca. 200 °C. Nach der Antoine-Gleichung lässt sich berechnen, dass mit Abschluss der Siedephase bei ca. 210 °C ein Wasserdampfdruck von 1,9 MPa (19 bar) in der Mittelachse des MMH-Prüfkörpers vorgelegen haben muss.

S5: Gibbsit (AH3)

Die MMH-Kurven z.B. der Feuerbetone MCC-A und MCC-PCE (Bild 52) zeigen im Temperaturbereich von etwa 270 °C ein Minimum, das unter Berücksichtigung von Literaturangaben (siehe Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.**) und Ergebnissen des IGF-Vorhabens 19855N /SIM20/ mit der thermischen Zersetzung von Gibbsit (S5) interpretiert wird. In den MMH-Kurven des Feuerbetons RC tritt S5 nicht auf oder nur angedeutet und daher sehr unsicher (Messung an Prüfkörper 1, hier jedoch bei ca. 340 °C und somit eigentlich schon zu heiß für die thermische Zersetzung von Gibbsit).

Im IGF-Vorhaben 19855N /SIM20/ wurde S5 in verschiedenen zementgebundenen, korundbasierten Feuerbetonen festgestellt, sofern das Signal S4 bei deutlich unter 200 °C auftrat und somit keine sehr hohen hydrothermale Drucke vorlagen. Es ist bekannt, dass sich Gibbsit unter hohen hydrothermalen Drucken in Böhmit umwandelt (siehe Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.**) oder dass das bei der Umwandlung von C₂AH₈ in C₃AH₆ auch gebildete AH₃ direkt als Böhmit kristallisiert. Entsprechend fehlt S5, wenn S4 bei hohen Temperaturen auftritt. Dies ist der Fall bei den hier untersuchten Proben des RC. Statt S5 erscheint hier das Signal S7 aufgrund der thermischen Zersetzung des hydrothermal gebildeten Böhmits (AH).

S6 (~320 - 360 °C): Katoit (C3AH6)

Das Signal S6 tritt in den MMH-Kurven des RC reproduzierbar auf in Form eines ausgeprägten Signals mit einem Minimum bei ca. 360 °C. Basierend auf den Ergebnissen des IGF-Vorhabens 19855N /SIM20/ wird das Signal mit der thermischen Zersetzung von Katoit (C₃AH₆) korreliert. In dem IGF-Vorhaben 19855N wurde festgestellt, dass das Signal S6 bei ansteigenden Temperaturen kurz nach dem Signal S5 auftritt. Die Abfolge von Reaktionen (thermische Zersetzung von Gibbsit, gefolgt von der Zersetzung von C₃AH₆) ist in der Literatur häufig beschrieben worden (siehe Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.**). Ebenso hat sich die thermische Zersetzung von C₃AH₆ bei Temperaturen zwischen 290 – 360 °C als deutlich druckabhängig erwiesen.

S7 (~500 - 550 °C): Böhmit (AH)

S7 erscheint in den RC als ein breites MMH-Signal mit einem Minimum im Temperaturbereich zwischen 500–550 °C. Die thermische Zersetzung von Böhmit ist der einzige plausible Phasenübergang

in diesem Temperaturbereich.

In den MMH-Kurven folgt gelegentlich auf S7 bei etwa 590 °C ein weiteres flaches Minimum. Zu einer im System möglichen Hydratphase bzw. deren thermischen Zersetzung liegen keine Informationen in der Literatur vor. Eine Interpretation besteht in der Bildung von Mayenit (C₁₂A₇), welcher als erste, in diesem Temperaturbereich aus dehydrierten CAH-Phasen neu gebildete CA-Phase gebildet werden könnte. Ein eindeutiger Beweis hierfür konnte röntgendiffraktometrisch aber nicht erbracht werden, da vermutlich der Phasenanteil des Mayenit unterhalb der Nachweisgrenze dieser Methode liegt.

5.4.2. MCC mit verschiedenen Verflüssigern und Modifikationen mit Fasern

Medium Cement Castable (MCC) mit verschiedenen Verflüssigern ohne PP-Fasern: MCC-A, MCC-P+Z, MCC-PC

Die MMH-Kurven und die Ergebnisse der TG-Untersuchungen für die mit verschiedenen Verflüssigern hergestellten MCC-Modellfeuerbetone MCC-A, MCC-P+Z und MCC-PC sind in **Bild 52** dargestellt, die Temperaturen und Intensitäten der Signale in Tabelle 16. Die in den MMH-Kurven der drei Feuerbetone auftretenden Signale unterscheiden sich sehr deutlich in ihrer Präsenz und ihrer Intensität. Wie schon für den RC beobachtet, korrespondieren die Signale in den MMH-Kurven mit den Thermogravimetrischen Ergebnissen (TG) und stehen somit, wie schon bei den RC, im Zusammenhang mit Phasenübergängen im Zuge der Entwässerung der Feuerbetone.

Die unterschiedlichen Verläufe der MMH- und der TG-Kurven zeigen an, dass die verwendeten Verflüssiger jeweils ihren eigenen pauschalen Einfluss auf das Entwässerungsverhalten der untersuchten MCC ausüben. Dabei wird berücksichtigt, dass für MCC-PC etwas weniger Anmachwasser verwendet werden musste. Die dadurch vergleichsweise geringere offene Porosität (Kapitel 4.3.5) kann das Entwässerungsverhalten ebenfalls beeinflussen.

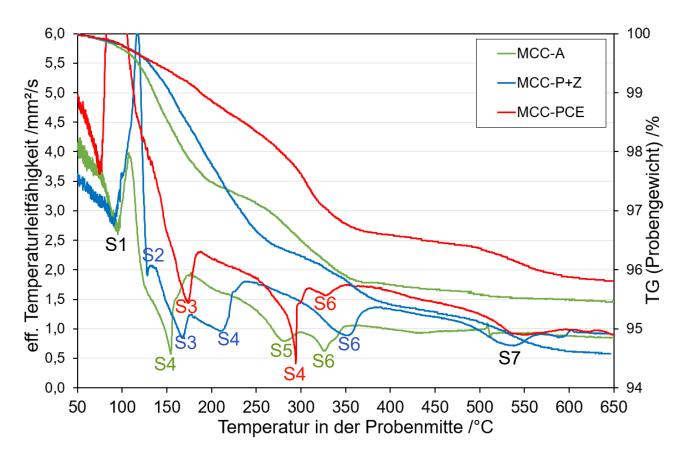


Bild 52: MMH-Ergebnisse für die mit verschiedenen Verflüssigern hergestellten MCC-Modell-Feuerbetone (MCC-PCE entspricht MCC-PC).

Tabelle 16: Relative Intensitäten (x= schwach / xx = mittel / xxx= stark) und Temperaturen der MMH-Signale der MCC-Modell-Feuerbetone (MCC-PCE entspricht MCC-PC).

Signal	S1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH_3	C ₃ AH ₆	AH
MCC-A	Х	-	-	XXX	Х	XX	-
Temperatur °C	104	-	-	155	282	326	-
MCC-P+Z	XX	Х	Х	XX	-	XXX	XXX
Temperatur °C	118	128	168	213	-	355	538
MCC-PC	XXX	-	XX	XXX	-	Х	XXX
Temperatur °C	92	-	174	294	-	328	546

Im Folgenden werden die auftretenden MMH-Signale S1 bis S7 entsprechend der für den RC beschriebenen Zuordnung beschrieben.

S1

Im prograden Temperaturverlauf zeigen alle drei MCC-Modell-Feuerbetone das Signal S1 (Bild 52), das der Nachhydratation zugeordnet wird. Die Maxima liegen bei Temperaturen von 92 °C (MCC-PC) bis 118 °C (MCC-P+Z). Die Intensitäten sind sehr unterschiedlich in der Reihenfolge MCC-PC > MCC-PC

P+Z > MCC-A. Die Untersuchungen mit RBA an abgebundenen Matrixversätzen haben gezeigt (Abschnitte 5.1 und 5.8.1), dass mit der Verwendung der Verflüssiger die Hydratation bei 20 °C verzögert wird, insbesondere bei Verwendung von Acrylat. Die geringe Intensität von S1 in MCC-A könnte demnach darin begründet sein, dass die verzögernde Wirkung des Acrylats auch bei Temperaturen um 100 °C die Nachhydratation betrifft. Dazu passt umgekehrt, dass die Nachhydratation mit dem weniger verzögernden PC-Verflüssiger besonders intensiv ist und schon bei niedrigerer Temperatur verläuft als mit A und P+Z.

Die Zuordnung von S1 mit der exotherm verlaufenden Nachhydratation ist aus Sicht der RBA-Ergebnisse an vorgetemperten Proben (Abschnitt 5.8.1) eher problematisch, weil diese gerade bei MCC-A auf eine intensive Nachhydratation hindeuten, im Widerspruch zu der hier festgestellten niedrigen Intensität von S1 in der MMH-Kurve. Allerdings werden im Rahmen der Rietveld-Auswertung die Ergebnisse (Phasenanteile) normiert, so dass die mit RBA ermittelte Zunahme an Hydratphasen nur relativ zu sehen ist und somit der Vergleich mit den Signal-Intensitäten der MMH-Messungen ebenfalls problematisch ist.

Für den Fall, dass S1 zusätzlich (die Nachhydratation überlagernd) durch die Umwandlung metastabiler CAH-Phasen ausgelöst würde, wäre dies in Übereinstimmung mit der geringen Intensität von S1 in MCC-A, in dem aufgrund des geringen Hydratationsgrades nach dem Abbinden besonders wenig metastabile CAH-Phasen vorliegen.

Die dritte Möglichkeit zur Interpretation von S1, nämlich Kristallisation von AH_x-Gel in AH₃ (Gibbsit), ist hier ebenfalls nicht auszuschließen. Beispielsweise ist in der MMH-Kurve des MCC-PC sowohl S1 als auch S5 (thermische Zersetzung von Gibbsit) besonders intensiv. In MCC-A sind beide Signale wesentlich geringer intensiv. In MCC-P+Z kann kein Zusammenhang zu erkennen sein, da Gibbsit aufgrund hoher Porendrucke (S4) vor seiner thermischen Zersetzung in Böhmit umgewandelt wird.

S2

In MCC-P+Z ist das Signal S2 (thermische Zersetzung von CAH₁₀) bei 128 °C mit geringer Intensität vorhanden, in den beiden anderen MCC tritt S2 nicht auf. Im Temperaturbereich von S2 ist bei allen drei MMH-Kurven eine Verflachung der steil abfallenden MMH-Kurven zu erkennen, die offenbar die Folge des Ausklingens von S1 ist.

S3, S4

Die im weiteren Verlauf steil abfallenden Verläufe der MMH-Kurven führen in Minima bei 155 °C (=S4 bei MCC-A), 170 °C (=S3 bei MCC P+Z) und 175 °C (=S3 bei MCC-PC).

MCC-A: Das Minimum bei 155 °C wird dem Siedeende des Porenwassers (S4) zugeordnet, weil sich die MMH-Kurve im Anschluss auf ein höheres Niveau einstellt (→ Ende des endothermen Prozesses) und die TG-Kurve stark abflacht, was als typisch für S4 erkannt wurde. S3 ist in MCC-A nicht zu

erkennen, was in Übereinstimmung ist mit der verzögernden Wirkung des Acrylats und den entsprechend niedrigen Gehalten an C₂AH₈.

MCC-PC: Das Minimum bei 174 °C in der MMH-Kurve wird mit S3 korreliert, da das Signal nicht entsprechend mit einer Abflachung in der TG-Kurve korreliert (wie bei MCC-A). Anschließend verläuft die MMH-Kurve des MCC-PC ohne Signale und auf einem hohen Niveau der effektiven Temperaturleitfähigkeit, bis diese in ein Minimum bei 294 °C führt. Erklärbar ist dieser Kurvenverlauf mit einer zunächst geringen "Siederate" und einem einhergehenden Druckaufbau aufgrund der geringen offenen Porosität des MCC-PC. Bei weiter zunehmender Temperatur wird der Porendruck schließlich sehr groß und "erzwingt" dann eine beschleunigte Freisetzung von Wasserdampf und in Folge auch eine höhere Siederate, welche in der TG-Kurve zu erkennen ist und die den abfallenden Verlauf der effektiven TLF (endothermer Effekt) bis in das Minimum bei 294 °C verursacht. Nach der Antoine-Gleichung impliziert dies einen sehr hohen Porendruck (7,7 MPa bei 294 °C). Das Auftreten von S4 bei 294 °C ist ein Hinweis auf eine unmittelbare Explosionsgefahr. Denkbar ist ein derartig hoher Porendruck tatsächlich nur in einem sehr geringen Restvolumen des MMH-Prüfkörpers entlang seiner Zylinderachse, wobei der entsprechend mächtige, teilweise bereits ausgedampfte und somit druckentlastete Zylindermantel die Explosion des Prüfkörpers verhinderte.

MCC-P+Z: Das Minimum bei 213 °C korrespondiert mit dem Abflachen der TG-Kurve und wird daher mit dem Siedeende S4 korreliert. Dies entspricht nach der Antoine-Gleichung einem Porendruck von 2,0 MPa.

S5

Die MMH-Kurve des Feuerbetons MCC-A zeigt im Temperaturbereich von etwa 270 °C bis 330 °C zwei dicht aufeinanderfolgende Minima. Diese werden, wie für den RC besprochen, mit der thermischen Zersetzung von zunächst Gibbsit (S5) und dann Katoit (S6) interpretiert. S5 liegt bei MCC-A bei 275 °C.

Bei MCC-PC liegt S4 (Siedeende Porenwasser bei 294 °C) bei einer so hohen Temperatur, dass die damit einhergehenden extremen Porendrucke zur Umwandlung von Gibbsit in Böhmit führten. S7 (thermische Zersetzung von Böhmit) tritt entsprechend im weiteren Verlauf der MMH-Kurve auf.

Bei MCC-P+Z fehlt S5 ebenfalls. Nach dem Signal des Siedeendes (S4 bei 213 °C), welches nach der Antoine-Gleichung auf einen hydrothermalen Porendruck von 20 bar verweist. Auch hier ist der Porendruck ausreichend Böhmit (AH) anstelle von Gibbsit (AH₃) zu stabilisieren. Das Ausbleiben des S5 und das Auftreten von S7 in der MMH-Kurve des MCC-P+Z ist damit in Übereinstimmung.

S6

S6 (thermische Zersetzung von C₃AH₆) tritt in den MMH-Kurven aller drei MCC auf. Bei MCC-PC ist die Intensität des Minimums (328 °C) vergleichsweise gering, Das ist unerwartet, weil der Hydratationsgrad nach Abbinden bei MCC-PC vergleichsweise hoch ist (Abschnitt 5.8.1). Bei MCC-A liegt das

Minimum von S6 bei 226 °C bei mittlerer Intensität und bei MCC P+Z bei 355 °C mit der höchsten Intensität.

S7

S7 erscheint in den MMH-Kurven der Feuerbetone MCC-P+Z und MCC-PCE jeweils als breites, intensives Signal mit Minima bei 538 °C bzw. 546 °C, das einhergeht mit einer deutlichen Gewichtsabnahme in den entsprechenden TG-Messungen.

In MCC-P+Z sowie MCC-PC führten die intensiv ausgeprägten hydrothermalen Bedingungen in der lang aushaltenden Siedephase (S4) zur Bildung von Böhmit (AH) und H₂O aus Gibbsit (AH₃).

MCC-A zeigt ein impulsartiges Signal bei einer Temperatur von 510 °C, das aufgrund seiner Form nicht vergleichbar ist mit dem Signal (S7) der Zersetzung von Böhmit. Zudem zeigt die dazugehörige TG-Messung, dass im Gegensatz zu den beiden anderen MCC in diesem Temperaturbereich kein Wasser freigesetzt wird. Das impulsartige Signal wurde nur bei den Acrylat-verflüssigten Modellbetonen beobachtet und steht daher vermutlich im Zusammenhang mit der thermischen Zersetzung von Acrylat-Abbauprodukten.

Medium Cement Castable (MCC) mit verschiedenen Verflüssigern mit Zusatz an PP-Fasern: MCC-A F, MCC-P+Z F, MCC-PC F

Der Zusatz an PP-Fasern zu den Rezepturen der MCC-Feuerbetone erfolgte zur Modifizierung der Porenstruktur im Vergleich zu den faserfreien MCC. Entsprechend den industriellen Erfahrungen erhöhen Zusätze an PP-Fasern die Dampfpermeabilitäten der Feuerbetone und vermindern so die Explosionsgefahr. Beim Aufheizen schmilzt das Polypropylen bei 160 °C. Vermutlich infiltriert es anschließend in die Matrix der Feuerbetone und öffnet dabei die zurückbleibenden Kanäle zur Erhöhung der Permeabilität. Ab ca. 330 °C zersetzt sich das Polypropylen.

Die Untersuchungen an den faserhaltigen Versionen der Feuerbetone stehen im Zusammenhang mit dem zweiten Ziel des Forschungsvorhabens, nämlich der Aufklärung des Einflusses des Porengefüges auf die thermische Zersetzung der Zementhydratphasen.

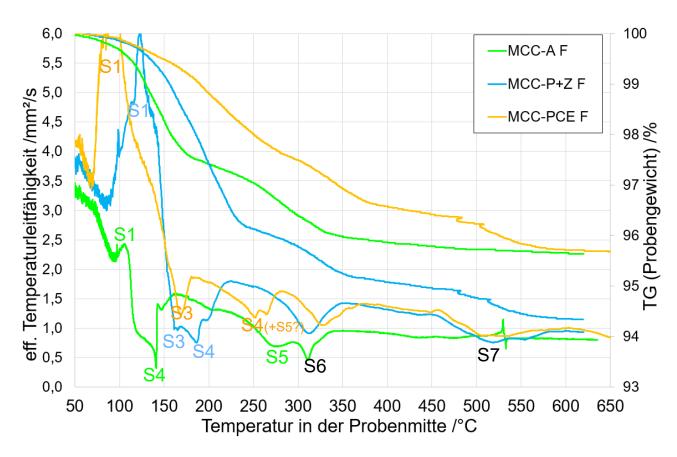


Bild 53: MMH-Ergebnisse für die mit verschiedenen Verflüssigern hergestellten MCC-Modell-Feuerbetone mit Zusatz von PP-Fasern.

Tabelle 17: Relative Intensitäten (x= schwach / xx = mittel / xxx= stark) und Temperaturen der MMH-Signale der MCC F.

Signal	S1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH ₃	C ₃ AH ₆	AH
MCC-AF	X	_	-	XXX	XX	XX	-
Temperatur °C	107	_	_	141	276	311	_
MCC-P+ZF	XXX	_	Х	XX	-	XXX	XXX
Temperatur °C	122	-	164	187	-	314	520
MCC-PC F	XXX	-	XX	XXX	?xxx	XX	XXX
Temperatur °C	96	_	169	260	?260	329	518

In den folgenden Abbildungen werden die MMH-Kurven der faserfreien und der faserhaltigen MCC gegenübergestellt.

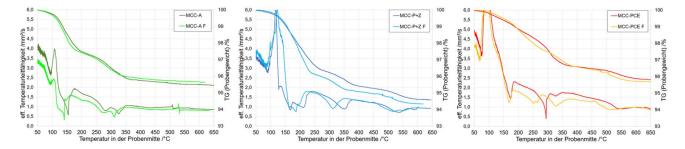


Bild 54: Einfluss der Fasern auf die Entwässerungsreaktionen (MMH) und das Abdampfen von Wasser (Thermogravimetrie) für die MCC mit verschiedenen Verflüssigern.

Die MMH-Kurven für den MCC-A F bzw. den MCC P+Z F zeigen weitgehend die gleichen Signale wie die MMH-Kurven der entsprechenden faserfreien MCC. Jedoch sind etliche Signale bei den faserhaltigen MCC zu niedrigeren Temperaturen verschoben, in keinem Fall ist es umgekehrt. Damit in Übereinstimmung zeigen die Ergebnisse der Thermogravimetrie, dass die Entwässerung der MCC mit Fasern bei etwas niedrigeren Temperaturen stattfindet. Die Differenz beträgt maximal ~ 40 K (S6 in MCC-P+Z, Bild 54 b), meist liegt die Verschiebung < 15 K. Dies deutet darauf hin, dass die nach Öffnung der Faserkanäle zusätzlich geschaffene Permeabilität einen Beitrag dazu leistet, dass die Feuerbetone leichter entwässern.

Die MMH-Kurven des MCC-PC und des MCC-PC F verlaufen bis zum Signal S3 (~170 °C) nahezu identisch. Anschließend verläuft die MMH-Kurve des MCC-PC F auf einem deutlich niedrigeren Niveau (verminderte scheinbare Temperaturleitfähigkeit) als die MMH-Kurve der faserfreien Varietät. Der Effekt könnte dadurch entstehen, dass der faserhaltige Feuerbeton aufgrund einer höheren Permeabilität eine höhere Siederate von Porenwasser ermöglicht und der entsprechende endotherme Effekt die Aufheizrate in der Probenmitte und so auch die scheinbare Temperaturleitfähigkeit vermindert. Auf ein intensiviertes Absieden verweist auch die schnellere Gewichtsabnahme der Probe (TG-Kurve) in diesem Temperaturintervall. Bei 250 – 260 °C erfolgt das Signal S4/S5 (Siedeende, evtl. auch thermische Zers. von AH₃), bei 325 °C die thermische Zersetzung von C₃AH₆ (S6) und bereits bei ca. 500 °C die thermische Zersetzung von Böhmit (S7).

Zusammenfassend wurden folgende Effekte durch den Zusatz an PP-Fasern auf die Signale S1 bis S7 festgestellt:

\$1 (Nachhydratation)

S1 liegt im Temperaturbereich unterhalb der Schmelztemperatur der PP-Fasern, so dass kein Effekt der Fasern zu erwarten ist. Auf die Temperaturen von S1 haben die Fasern tatsächlich keinen feststellbaren Effekt. Auch auf die Intensitäten von S1 haben die Fasern keinen Effekt bei den MCC mit PC oder P+Z. Nur bei MCC-A F ist die Intensität gegenüber dem faserfreien Feuerbeton etwas verringert.

S2 (thermische Zersetzung von CAH₁₀)

In den MMH-Kurven der MCC mit Zusatz an Fasern wurden keine Signale S2 festgestellt, die auf die thermische Zersetzung von CAH₁₀ verweisen würden.

S3 (thermische Zersetzung von C₂AH₈)

Anhand der MMH-Ergebnisse hat der Zusatz an Fasern nur einen sehr geringen Einfluss auf die Temperatur der thermischen Zersetzung von C₂AH₈ in MCC-P+Z (168 °C ohne, 164 °C mit Fasern), sowie MCC-PC (174 °C ohne, 169 °C mit Fasern). Bei MCC-A ist S3 in den MMH-Kurven nicht erkennbar. S3 scheint vom Porendruck wenig beeinflusst zu sein oder die Fasern haben in diesem Temperaturbereich noch keinen nennenswerten Effekt.

S4 (Siedeende Porenwasser)

Für MCC-A F und MCC-P+Z F verringern sich die Temperaturen von S4 um 14 bzw. 26 K im Vergleich zu den entsprechenden faserfreien MCC. Dies entspricht nach der Antoine-Gleichung der Minderung der Porendrucke um 2 bzw. 8 bar. Bei MCC-PC-F verringert sich S4 von 294 °C auf 260 °C, was einer erheblichen Druckminderung von 7,7 auf 4,6 MPa entspricht.

S5 (thermische Zersetzung von AH₃)

Wie bei MCC-P+Z ist auch bei MCC-P+Z F kein Signal S5 vorhanden. Trotz der Absenkung des Siedeintervalls (S4) durch den Zusatz der Fasern sind die entstehenden hydrothermalen Bedingungen offenbar immer noch ausreichend hoch, um AH₃ in Böhmit umzusetzen. Bei MCC-A F vermindert sich S5 gegenüber MCC-A nur geringfügig um 6 K.

Für den Feuerbeton MCC-PC ist der Einfluss der Fasern auf die Reaktionen S4-S5 komplexer. Im Gegensatz zum faserfreien MCC-PC treten bei MCC-PC F möglicherweise die Signale S5 bei 250 °C und S4 bei 260 °C nacheinander auf. Die faserfreie Modifikation MCC-PC zeigt kein S5, weil aufgrund des hohen Porendrucks Gibbsit vor dem Temperaturbereich des S5 in Böhmit umwandeln konnte.

S6 (thermische Zersetzung von C₃AH₆)

Die thermische Zersetzung von Katoit (S6) verringert sich bei den mit Acrylat verflüssigten MCC durch den Zusatz an Fasern um 15 K, bei MCC-P+Z jedoch um 41 K. Bei MCC-PC ist mit dem Zusatz an Fasern keine Veränderung der Temperatur des Minimums von S6 feststellbar, allerdings ist das Signal in dem Feuerbeton mit Fasern deutlich intensiver.

S7 (thermische Zersetzung von AH)

Die thermische Zersetzung von Böhmit (S7) kann bei MCC-A F nicht festgestellt werden. Bei MCC-P+Z F ist im Vergleich zu MCC-P+Z kein deutlicher Einfluss auf Temperatur und Intensität von S7 festzustellen. Die Minima verlaufen sehr flach und die formal festgestellte Temperaturdifferenz ihrer Minima von 18 K scheint bei visuellem Vergleich der MMH-Kurven wenig aussagekräftig. Bei MCC-PC verringert sich S7 durch den Faserzusatz um 28 K.

5.4.3. LCC mit verschiedenen Verflüssigern und Modifikationen mit Fasern

Low Cement Castable (LCC) mit verschiedenen Verflüssigern ohne Zusatz an PP-Fasern: LCC-A, LCC-P+Z, LCC-PC

In Bild 55 sind die MMH-Kurven dargestellt, die für die mit den verschiedenen Verflüssigern hergestellten LCC ermittelt wurden. Wie bei den MCC unterscheiden sich die MMH-Kurven der mit verschiedenen Verflüssigern hergestellten LCC hinsichtlich der Ausbildung der Signale (S1-S7), wobei auch hier die auftretenden Signale mit den Temperaturintervallen in der TG korrelieren, in denen eine beschleunigte Gewichtsabnahme stattfindet.

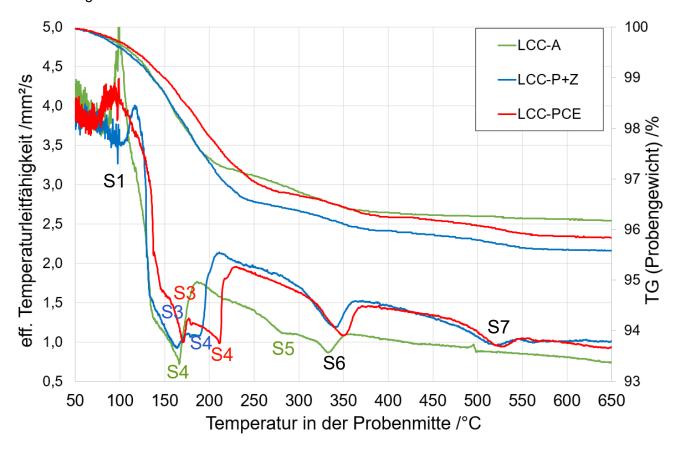


Bild 55: MMH-Ergebnisse für die LCC-Modell-Feuerbetone mit verschiedenen Verflüssigern.

Tabelle 18: Relative Intensitäten (x= schwach / xx = mittel / xxx= stark) und Temperaturen der MMH-Signale der LCC.

Signal	S1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH ₃	C ₃ AH ₆	AH
LCC-A	XX	-	?	XXX	Х	XX	-
Temperatur °C	99	-	?	165	283	333	-
LCC-P+Z	Х	-	Х	XXX	-	XXX	XX
Temperatur °C	117	-	166	189	-	341	525
LCC-PC	X	-	XX	XXX	-	XXX	XX
Temperatur °C	94	_	172	212	_	351	528

S1 (Nachhydratation, evtl. auch Umwandlung metastabiler CAH-Phasen oder Kristallisation von AH_x-Gel)

Im Vergleich zu den MCC fallen die Intensitäten der S1-Signale bei den LCC deutlich geringer aus, in Übereinstimmung mit dem geringeren Zementanteil (vermutlich auch geringere Menge an residualem Zementklinker) in den LCC. Bei LCC-PC liegt S1 bei 94 °C und somit (wie auch schon bei den MCC) bei etwas niedriger Temperatur als bei LCC P+Z (S1 bei 117 °C) und LCC-A (S1 bei 99 °C).

S2 (thermische Zersetzung von CAH₁₀)

Das Signal S2 wird in den MMH-Kurven der LCC nicht festgestellt.

S3 (thermische Zersetzung von C₂AH₈)

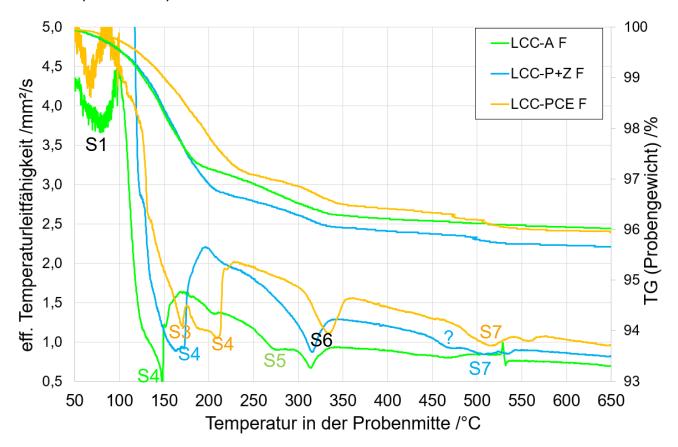
Nach S1 fallen die MMH-Kurven der LCC steil in ein Minimum bei 165-170 °C, das für LCC-P+Z und LCC-PC eindeutig dem Signal S3 zugeordnet werden kann, da bei diesen das Signal S4 erst deutlich abgegrenzt bei höheren Temperaturen auftritt. Dies ist bei LCC-A nicht der Fall, der Anstieg der MMH-Kurve erfolgt bei 165 °C und wird als Reaktion auf das Siedeende (S4) interpretiert, ohne dass ein vorausgehendes S3 feststellbar wäre. Dies kann erklärt werden mit der verzögernden Wirkung des Acrylat-Verflüssigers auf die Bildung von CAH-Phasen.

S4 (Siedeende Porenwasser)

S4 erfolgt für LCC-A bei 165 °C, bei LCC-P+Z bei 189 °C und für den LCC-PC bei 212 °C. Die Temperaturen für S4 erhöhen sich deutlich mit abnehmender offener Porosität (siehe Kapitel 6.4.6).

S5 (thermische Zersetzung von AH₃)

S5 tritt nur bei LCC-A auf (283 °C). Die relativ lang anhaltenden hydrothermalen Bedingungen (hohe Temperaturen für S4 und entsprechend hohen Porendrucken nach der Antoine-Gleichung) in LCC-P+Z und LCC-PC ermöglichen hierbei die Phasenumwandlung von Gibbsit in Böhmit + H₂O.


S6 (thermische Zersetzung von C₃AH₆)

In allen MMH-Kurven der drei LCC tritt S6 deutlich auf, in LCC-A bei 333 °C, in LCC-P+Z bei 342 °C und in LCC-PC bei 351 °C. Auch hier erhöhen sich die Signaltemperaturen von C₃AH₆ (S6) mit niedrigen offenen Porositäten und somit offenbar hohen Porendrucken (siehe Kapitel 6.4.6), obwohl nach S4 nicht zwingend hydrothermale Bedingungen vorliegen und der Druck niedriger sein kann als berechnet nach der Antoine-Gleichung.

S7 (thermische Zersetzung von Böhmit, AH)

Nach S6 verlaufen die MMH- und die TG-Kurven zunächst sehr flach. Bei LCC-P+Z und LCC-PC folgt dann bei etwa 530 °C die thermische Zersetzung von Böhmit (S7). Wie schon bei S5 beschrieben führt die im Vergleich zu LCC-A verlängerte hydrothermale Phase in LCC-P+Z und LCC-PC zur Umwandlung von Gibbsit in Böhmit und Wasser und entsprechend zu S7.

Low Cement Castable (LCC) mit verschiedenen Verflüssigern und Zusatz an PP-Fasern: LCC-A F, LCC-PC F

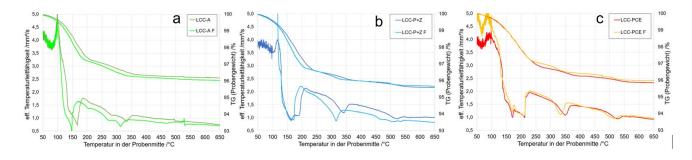


Bild 56: Einfluss der Fasern auf die Entwässerungsreaktionen (MMH) und das Abdampfen von Wasser (Thermogravimetrie) für die MCC mit verschiedenen Verflüssigern. Die Diagramme a-c zeigen im direkten Vergleich, in welchem Ausmaß die PP-Fasern die Entwässerungsreaktionen zu niedrigeren Temperaturen verschieben. In LCC-PC beschränkt sich der Einfluss der Fasern auf S6.

Tabelle 19: Relative Intensitäten (x= schwach / xx = mittel / xxx= stark) und Temperaturen der MMH-Signale der LCC F.

Signal	S1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH ₃	C ₃ AH ₆	АН
LCC-AF	X	-	-	XXX	XX	XX	-
Temperatur °C	104	_	_	148	276	314	-
LCC-P+ZF	?	-	-	XXX	-	XXX	XX
Temperatur °C	?	-	-	172	-	317	508
LCC-PC F	X	_	XX	XXX	_	XXX	XXX
Temperatur °C	88	_	169	210	_	335	517

Die Signale in den MMH-Kurven der LCC-Feuerbetone mit Zusatz an PP-Fasern unterscheiden sich nicht grundsätzlich von den Signalen der faserfreien LCC. Einige Signale der Feuerbetone mit Faserzusatz verschieben sich zu etwas niedrigeren Temperaturen (Tabelle 19), z.B. liegt das Siedeende (S4) bei LCC-A F bei 148 °C statt bei 168 °C ohne Fasern. Bei LCC-P+Z liegt das Siedeende bei Anwesenheit der Fasern 15 K früher als im faserfreien Feuerbeton. Wie bei den MCC-PC lässt sich auch bei den LCC-PC kaum ein Einfluss der Fasern auf das Siedeende erkennen. Auf die thermische Zersetzung von C₃AH₆ (S6) ist bei allen drei LCC eine Absenkung der Zersetzungstemperatur von etwa 15 K zu erkennen. Bei LCC-P+Z ist auch die thermische Zersetzung von Böhmit (S7) etwas zu niedrigeren Temperaturen verschoben, bei LCC-PC ist kein Unterschied feststellbar.

5.4.4. ULCC mit verschiedenen Verflüssigern und Fasern

Aufgrund ihrer Neigung zur Explosion konnten die faserfreien ULCC nicht systematisch untersucht werden. Für einen Prüfkörper des ULCC-A wurde der MMH-Aufbau provisorisch an dem Ofen installiert, der für die Explosionstests verwendet wurde. Der Verlauf der MMH-Kurve endet hier mit der Explosion des Prüfkörpers bei einer Temperatur von 144 °C (gemessen in der Probenmitte). Das Bersten des Prüfkörpers fand während der hydrothermalen Siedephase des Porenwassers statt. Die MMH-Kurve für diesen Versuch ist in Bild 57 dargestellt, zusammen mit den MMH-Kurven der faserhaltigen Variationen des ULCC, die mit einer Aufheizrate von 250 K/h nicht explodierten.

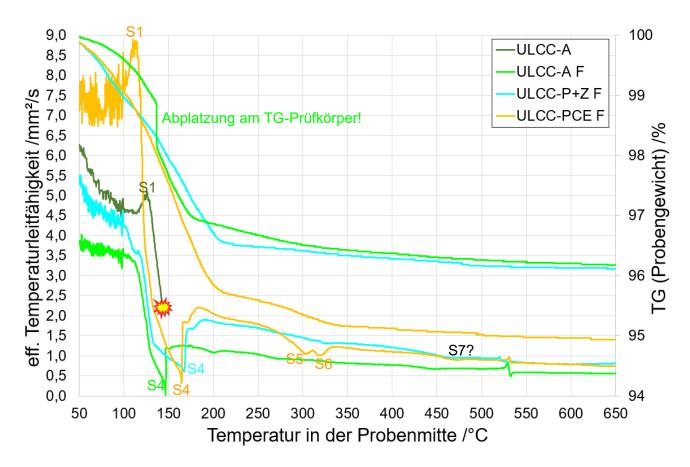


Bild 57: Ergebnisse (MMH+TG) für die ULCC F-Feuerbetone. Die MMH-Prüfung des ULCC-A ohne Fasern erfolgte improvisiert in dem Ofen, in dem die Explosionstests durchgeführt werden.

Tabelle 20: Relative Intensitäten (x= schwach / xx = mittel / xxx= stark) und Temperaturen der MMH-Signale der ULCC.

Signal	S1	S2	S3	S4	S5	S6	S7
	Nachhydr.	CAH ₁₀	C ₂ AH ₈	Siedeende	AH_3	C ₃ AH ₆	АН
ULCC-A	Х	-	-	Explosion	-	-	-
Temperatur °C	131	-	-	144	-	-	-
ULCC-AF	-	-	-	XXX	-	-	1
Temperatur °C	-	-	-	147	-	-	-
ULCC-P+ZF	-	-	-	XXX	-	(x)	X
Temperatur °C	-	-	-	165	-	324	475?
ULCC-PC F	X	-	-	XXX	XX	XX	X
Temperatur °C	114	_	-	164	304	319	480?

Entsprechend dem geringen Zementgehalt in den ULCC F sind die MMH-Signale, die durch die thermische Zersetzung von CAH-Phasen entstehen, nur schwach ausgebildet oder gar nicht erkennbar (Bild 57). Dies betrifft alle Signale mit der Ausnahme von S4, dem Siedeende von Porenwasser, das in den MMH-Kurven aller drei faserhaltigen ULCC mit einer ähnlichen Intensität auftritt wie in den MMH-Kurven der MCC und LCC. Die mit S4 korrespondierenden TG-Kurven flachen bei Temperatu-

ren, die etwas höher liegen als die jeweils korrelierten Minima der S4, deutlich ab. Diese Temperaturunterschiede zwischen S4 und dem korrespondierenden Knick in der TG-Kurve sind für alle drei ULCC-F fast gleich. Als Ursache für die Temperaturdifferenzen zwischen S4 und der Abflachung der TG-Kurve kann angenommen werden, dass der beim Absieden des letzten vorhandenen Porenwassers entstehende Dampf etwas Zeit benötigt, um an die Oberfläche des Prüfkörpers zu diffundieren, dort zu entweichen und von der TG registriert zu werden.

Nur in der MMH-Kurve des ULCC-PC F treten deutliche Signale in Folge der Zersetzung von CAHund AH- Phasen auf, nämlich S1, S5, S6 und sehr schwach auch S7. Offenbar haben sich nur in ULCC-PC Hydratphasen in ausreichender Menge gebildet, um deren Zersetzung mit MMH erkennen zu können. Dies ist in Übereinstimmung mit der Feststellung, dass die verzögernde Wirkung der Verflüssiger A und P+Z stärker ausgeprägt ist als für den Verflüssiger PC (Kapitel 5.8.1 und 5.1).

Die TG-Probe des ULCC-A F zeigt bei 148 °C einen sprunghaften Gewichtsverlust. Nach dem Versuch wurde erkannt, dass an der Stirnfläche des zylindrischen Prüfkörpers Material während der Messung abgeplatzt war. Die Temperatur (148 °C) entspricht genau der Explosionstemperatur des faserfreien ULCC-A. Die Beobachtung signalisiert, dass die TG-Probe ULCC-A F während des Versuchs unmittelbar vor einer Explosion stand.

5.5. MMH an zerkleinerten Feuerbetonen (FGF)

Zur Beschreibung des direkten Einflusses der verwendeten Verflüssiger auf das Zersetzungsverhalten der Zementhydratphasen, d. h unter Vermeidung des Einflusses des Porendrucks und der verwendeten Menge an Anmachwasser, wurden MMH-Untersuchungen an Siebfraktionen <1 mm der Feuerbetone durchgeführt, die nach dem Abbinden mit dem Backenbrecher zerkleinert wurden. In solchen MMH-Messungen wird rein die vom verwendeten Verflüssiger ausgehende Beeinflussung der Zersetzungstemperaturen der Zementhydratphasen festgestellt, also die Auswirkung der Art (Paragenese), morphologische Gestalt und Größe der Hydratphasenkristalle. Der stabilisierende Einfluss des Porendrucks wird umgangen, weil sich in den zerkleinerten Schüttungen kein Porendruck aufbauen kann. Die Differenzen in den Ergebnissen einer Gruppe (z. B. MCC-P, MCC-PC und MCC-A) zeigen dann den Einfluss der durch den Verflüssiger veränderten Ausbildung der Hydratphasen (Art, Morphologie und Größe der Kristalle) auf die Zersetzungstemperaturen. Wenn in den Feuerbetonen ein Einfluss der Verflüssiger auf die Zersetzungstemperatur der Zementhydratphasen festgestellt wird, aber nicht in den jeweils entsprechenden Schüttungen 0-1 mm, dann dominiert der indirekte Einfluss der Verflüssiger auf die Entwicklung des Porengefüges und der damit im Zusammenhang stehenden Druckstabilisierung von Hydratphasen gegenüber dem direkten Einfluss der Morphologie auf die thermische Stabilität bzw. Zersetzungstemperatur der Zementhydratphasen. Anschließend wurden die Ergebnisse den MMH-Kurven der intakten Feuerbetone gegenübergestellt, um so den Einfluss des Porengefüges auf das Entwässerungsverhalten zu erkennen.

Bei den MMH-Untersuchungen an den Schüttungen wurde vermutet, dass ein Teil des freien Porenwassers beim Zerkleinern der Feuerbetone und dem anschließenden Absieben der Kornfraktion <1 mm verdunstete (die Schüttungen waren rieselfähig). Zudem musste das restliche freie Porenwasser bei Temperaturen bis 100 °C verdunsten und Reste ggf. bei 100 °C absieden, weil in der Schüttung keine Drucke bzw. hydrothermale Bedingungen aufgebaut werden können. Bei Temperaturen > 100 °C beeinflusst also allein die thermische Zersetzung der CAH-Phasen das Auftreten von Signalen in den MMH-Kurven.

In den Schüttungen 0-1 mm liegen die Matrix - und in ihr auch die Zementhydratphasen - angereichert vor, so dass intensive und aussagekräftige MMH-Signale auftraten. Es werden im Folgenden die MMH-Kurven der zerkleinerten RC, MCC, LCC und ULCC-Feuerbetone (Schüttungen der Siebfraktionen 0-1 mm) vorgestellt.

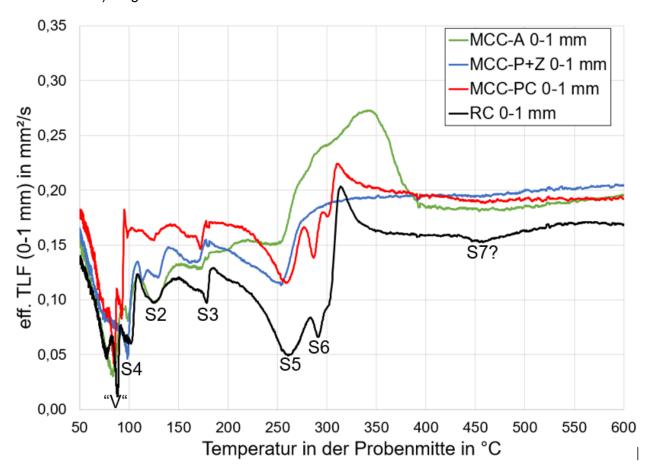


Bild 58: MMH-Kurven der Siebfraktionen 0-1 mm der zerkleinerten MCC und des RC im Vergleich.

Die MMH-Kurven der MCC-Schüttungen (Bild 58) sind sich untereinander ähnlicher als die MMH-Kurven der unzerkleinerten MCC-Modell-Feuerbetone (Bild 52). Intensive Minima "V" in den Kurvenverläufen (endotherme Reaktionen) unterhalb 100 °C verweisen auf das Verdunsten von Resten an Porenwasser oder auf das Austrocknen von amorphem AH_x-Gel. Das Signal S1 wird in den Schüt-

tungen nicht beobachtet. Dies ist ein kräftiges Indiz dafür, dass S1 in den Feuerbetonen durch Nachhydratation entsteht und nicht durch Umwandlung metastabiler CAH-Phasen oder Kristallisation von AH_xGel, die ja in den Schüttungen 0-1 mm gegenüber den unzerkleinerten Feuerbetonen noch angereichert vorliegen. In den Schüttungen fehlt jedoch spätestens oberhalb 100 °C das für eine Nachhydratation benötigte Porenwasser, im Gegensatz zu den unzerkleinerten Feuerbetonen, in denen S1 auftritt. Insbesondere bei MCC-P+Z stieg die MMH-Kurve bei 100 °C steil an, was auf ein Absieden von restlichem Porenwasser unter Normaldruck hinweist und das Signal somit als S4 (Siedeende) zu bezeichnen ist. Bei MCC-A ist der Steilanstieg bei 100 °C nur undeutlich ausgeprägt, bei MCC-PC erfolgt ein Steilanstieg schon bei 95 °C im Anschluss an das Minimum "V", so dass dieser nicht als S4 bezeichnet werden kann.

Die Schüttungen aller drei MCC zeigen die Signale S2 (CAH₁₀) und S3 (C₂AH₈) mit leicht unterschiedlichen Intensitäten (Bild 58, Tabelle 21). Das Auftreten von S2 und S3 ist ein weiterer Hinweis darauf, dass S1 nicht durch die Umwandlung metastabiler CAH-Phasen verursacht wird.

Das Signal S3 (C₂AH₈) ist bei den MCC mit PC und mit P+Z etwas intensiver als mit A, in Übereinstimmung mit der verzögernden Einfluss des Acrylats auf die Bildung von CAH-Phasen (RBA, Kapitel 5.1 und Abbindeverhalten, Bild 23). Deutlicher unterscheiden sich die Kurvenverläufe der drei MCC-Schüttungen im Temperaturbereich der Signale S5 und S6. Zwar steigen die MMH-Kurven aller drei Schüttungen nach Durchlaufen des Minimums bei S5 (AH₃, 250-260 °C) an, allerdings in unterschiedlich komplexer Weise. So ist der Anstieg in MCC-PC überlagert von S6 (C₃AH₆), gefolgt von einem weiteren Minimum, das nicht zugeordnet werden kann. Bei MCC-P+Z folgt auf S5 kein weiteres Signal. In der MMH-Kurve des MCC-A fehlt S5, es erscheint dann aber ein breites, hohes Maximum bei etwa 340 °C, das am ehesten mit der thermischen Zersetzung oder Oxidation des Acrylats erklärt werden könnte.

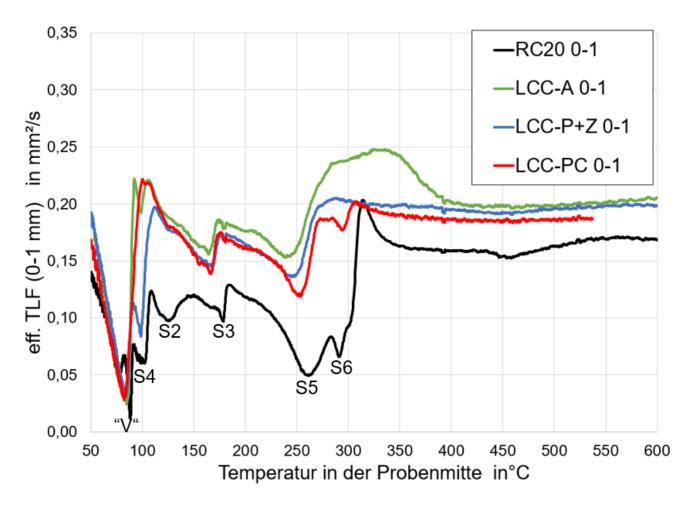


Bild 59: MMH-Kurven der Siebfraktionen 0-1 mm der zerkleinerten LCC und des RC im Vergleich.

Die MMH-Kurven der LCC-Schüttungen (Bild 59) sind sich untereinander noch ähnlicher als die der MCC-Schüttungen. Im Gegensatz zu den MCC ist S2 (CAH₁₀) bei den LCC-Schüttungen fast nicht wahrnehmbar, S3 (C₂AH₈) erscheint dagegen sogar etwas intensiver. Im weiteren Verlauf zeigen alle drei Kurven das Signal S5 (thermische Zersetzung von AH₃). Ähnlich wie bei den MCC folgt bei den LCC nach der thermischen Zersetzung von Gibbsit (AH₃, S5) ein Kurvenanstieg, der bei LCC-PC (wie bei MCC-PC) überlagert ist von S6 (C₃AH₆). Bei LCC-P+Z folgt kein Signal und bei LCC-A folgt, wie schon bei MCC-A, ein breites und intensives Signal mit einem flachen Maximum, das vermutlich auf die thermische Zersetzung oder Oxidation von Acrylat hinweist.

In den ULCC-Schüttungen treten die MMH-Signale der thermischen Zersetzung von Zementhydratphasen naturgemäß nur mit geringer Intensität auf oder sie fehlen (Bild 60). Es treten allerdings andere Signale auf, die sich nicht mit dem bisher angewendeten Zuordnungsschema (S1-S7) beschreiben lassen. Sie liegen bei ca. 100 °C, 160 °C, 200 °C und 270 °C und haben exothermen Charakter, d. h. sie zeigen eine peakartige Form mit Maxima. Ihnen liegen offenbar das Aufschmelzen und die Zersetzung der PP-Fasern zugrunde, die nur in den ULCC-Schüttungen enthalten waren. Die Fasern sind anwesend, weil die Schüttungen aus den gleichen Feuerbetonen hergestellt wurden, die auch unzerkleinert mit MMH untersucht wurden. Diese konnten aufgrund der Explosionsneigung nur

mit Faserzusatz untersucht werden.

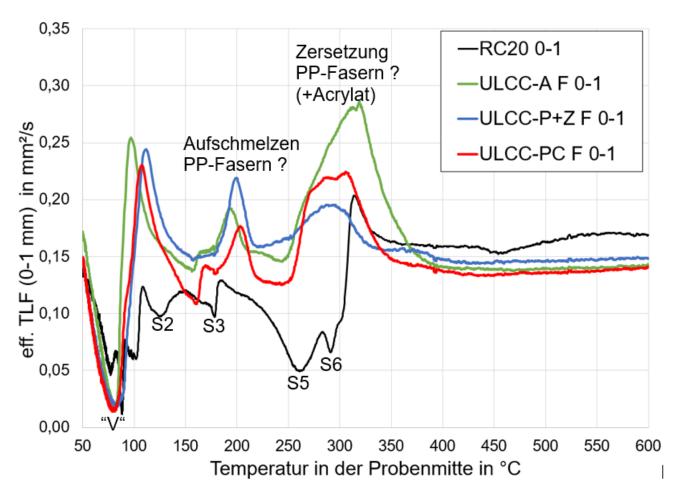


Bild 60: MMH-Kurven für die zerkleinerten ULCC im Vergleich zum zerkleinerten RC.

Die PP-Fasern schmelzen nach Herstellerangaben bei 160 °C. Möglicherweise führt das Aufschmelzen zu den stufenförmig ansteigenden Kurvenverläufen bei dieser Temperatur. Bei ULCC-P+Z F ist die 160 °C-Stufe allerdings von sehr geringer Intensität. Allerdings ähneln die Signale bei 160 °C dem Signal S3, das in der Schüttung des RC bei 170 °C auftritt. Daher könnte das stufenförmige Signal bei 160 °C alternativ durch die thermische Zersetzung von C₂AH₈ (S3) verursacht sein. Problematisch ist in diesem Zusammenhang die geringe Menge an Zement in den ULCC. Im weiteren Verlauf folgt bei allen drei ULCC-Schüttungen ein intensives Signal mit einem Maximum bei ca. 200 °C. In Frage kommt eine Reaktion im Zusammenhang mit den bei dieser Temperatur aufgeschmolzenen PP-Fasern, die in der RC-Schüttung ebenso nicht vorhanden sind wie das Signal bei 200 °C. Maxima zwischen 280 °C (ULCC-P+Z F 0-1 mm) bis 320 °C (ULCC-A F 0-1 mm) stehen dann vermutlich im Zusammenhang mit der thermischen Zersetzung des Polypropylens, das sich nach Herstellerangaben (in reiner Form) bei 330 °C thermisch zersetzt.

Tabelle 21: Temperaturen und Intensitäten (x= schwach / xx = mittel / xxx= stark) der MMH-Signale der zerkleinerten Feuerbetone (Schüttungen der Siebfraktionen 0-1 mm).

Signal	"V"	S1	S2	S3	S4	S5	S6	S7
	Verdampfen	Nachhydr.	CAH ₁₀ ?	C ₂ AH ₈	Siedeende	AH ₃	C ₃ AH ₆	AH
RC	XXX	- 1	xx	XX	XXX	XXX	xx	Х
Temperatur °C	89	-	126	178	102	261	292	458
MCC-A	XXX	- 1	XX	Х	Х	x?	-	-
Temperatur °C	87	-	126	173	100	247	-	-
MCC-P+Z	-	-	X	XX	XXX	XXX	-	_
Temperatur °C	-	-	129	167	98	255	-	-
MCC-PC	XXX	-	X	XX	-	XXX	XX	-
Temperatur °C	88	_	125	172	_	260	287	-
LCC-A	XXX	-		XX	1	XXX	-	-
Temperatur °C	85	-		162	99	240	-	-
LCC-P+Z	XXX	-	x?	XX	XXX	XXX	-	_
Temperatur °C	82	-	126	167	98	246	-	-
LCC-PC	XXX	-	x?	XX	-	XXX	XX	_
Temperatur °C	82	_	126	165	_	253	294	-
ULCC-A F	XXX	-	-	(x)?	-	-	-	-
Temperatur °C	81	-	-	158	-	-	-	-
ULCC-P+Z F	XXX	-	-	x?	-	-	-	-
Temperatur °C	82	-	-	156	-	_	-	-
ULCC-PC F	XXX	-	-	xx?	-	-	_	-
Temperatur °C	81	-	_	160	_	_	_	_

5.5.1. Einfluss des Porengefüges auf das Entwässerungsverhalten – Gegenüberstellung der MMH-Signale der Feuerbetone mit denen der Schüttungen

Nach der Untersuchung des direkten Einflusses der Verflüssiger anhand der thermischen Stabilität der Zementhydratphasen in den Schüttungen (über den Einfluss der Verflüssiger auf die Ausbildung (Morphologie, Größe und Art der Hydratphasen-Kristalle) wurde untersucht, welchen Einfluss das Porengefüge auf die thermische Stabilität der Hydratphasen ausübt. So wird die offene Porosität der intakten Feuerbetone deutlich vom verwendeten Verflüssiger, aber zusätzlich auch von der verwendeten Menge an Anmachwasser beeinflusst, die jeweils an den verwendeten Verflüssiger angepasst wurden (Kapitel 4.2.2). Das Porengefüge beeinflusst den Porendruck während der ersten Aufheizung und dieser die thermische Stabilität der Hydratphasen und den Existenzbereich flüssigen Porenwassers (hydrothermaler Bereich). In den Schüttungen wird der Einfluss des Porengefüges eliminiert, weil sich in den Schüttungen kein Porendruck aufbauen kann. Durch den Vergleich der MMH-Kurven der Feuerbetone mit den aus ihnen hergestellten Schüttungen lässt sich also der Einfluss des Porengefüges jeweils separat für die MCC, LCC und die ULCC zu beschreiben.

MCC

Die MMH-Kurven (Feuerbetone vs. Schüttungen) der MCC sind in Bild 61 gegenübergestellt. Bei den Schüttungen der MCC-A und MCC-PC tritt im Vergleich zu den Feuerbetonen bei T~80 °C das endotherme Signal "V" auf, wegen der bei ansteigenden Temperaturen beschleunigten Verdunstung von restlichem Porenwasser in der Schüttung. Bei der Schüttung MCC-P+Z liegt das Minimum von "V" jedoch bei 100 °C und entspricht daher dem Signal S4, dem Siedeende unter Normaldruck.

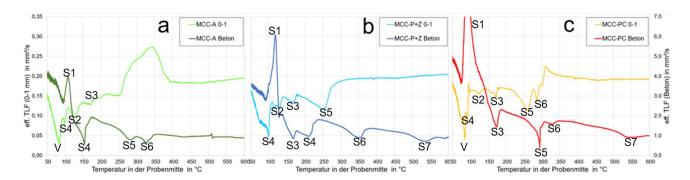


Bild 61: MMH-Kurven der MCC-Feuerbetone im Vergleich zu den aus ihnen hergestellten Schüttungen (abgesiebte Kornfraktion 0-1 mm). Die effektiven Temperaturleitfähigkeiten der Schüttungen (Skalierung rechte Seite) liegen etwa eine Größenordnung niedriger als die der Feuerbetone (Skalierung linke Seite). Bedeutung der Signale S1-S7 siehe Text; Signal V = Verdunstung von Restfeuchte in den Schüttungen bei T<100 °C.

- **S1.** Eine Nachhydratation (S1) findet in den Schüttungen nicht statt. Die bei nahe 100 °C noch vorhandene Restmenge an Porenwasser reichte offenbar für einen erkennbaren Umsatz an Nachhydratation (= erkennbares Signal S1) nicht aus. Oberhalb 100 °C ist das Porenwasser in den Schüttungen entwichen und es kann keine Nachhydratation stattfinden.
- **S2.** Das Signal S2 (thermische Zersetzung von CAH₁₀) tritt in geringer Intensität in allen drei MCC-Schüttungen bei Temperaturen um 125 °C auf. In den Feuerbetonen flachen bei dieser Temperatur zwar die MMH-Kurven infolge des Abklingens des Signals S1 ab, S2 ist jedoch nicht eindeutig erkennbar. In den Schüttungen ist damit zu rechnen, dass die Matrix und somit auch CAH₁₀ gegenüber dem intakten Feuerbeton angereichert vorliegt und S2 daher nur in den Schüttungen erkennbar wird. Eine Aussage zur Beeinflussung des Porendrucks auf S2 ist aufgrund der geringen Intensitäten von S2 in den intakten Feuerbetonen nicht möglich.
- **S3.** Das Signal der thermischen Zersetzung von C₂AH₈ tritt in den MMH-Kurven der Schüttungen und der intakten Feuerbetone MCC-P+Z und MCC-PC jeweils bei annähernd gleicher Temperatur auf (~170 °C). In dem intakten MCC-A fehlt C₂AH₈ (S3), vermutlich aufgrund der verzögernden Wirkung von Acrylat beim Abbinden. In der Schüttung MCC-A ist S3 jedoch erkennbar, offenbar aufgrund der Anreicherung der Matrix in der Siebfraktion 0-1 mm. Die thermische Zersetzung von C₂AH₈ ist offenbar nahezu unbeeinflusst vom Wasserdampfdruck.
- **S4.** Das Signal ist in den Schüttungen MCC-A nur sehr gering intensiv (bei 100 °C), weil das ursprünglich im Feuerbeton vorhandene Porenwasser in der Schüttung bei T<100 °C schon weitgehend verdunstet ist. In den Schüttungen MCC-P+Z und MCC-PC zieht sich die Verdunstung länger hin, bis 100 °C erreicht werden und das letzte Porenwasser absiedet (S4). Warum das Porenwasser in der Schüttung des MCC-A etwas früher verdunstet als in MCC-P+Z und MCC-PC, bleibt offen. Das Auftreten von S4 in den MMH-Ergebnissen der intakten MCC-Feuerbetone MCC-P+Z und MCC-A bei T >> 100 °C belegt jedoch, dass hydrothermale Bedingungen beim Aufheizen der intakten Feuerbetone

ausgebildet wurden. Der Einfluss des Porengefüges auf die Siedetemperatur des Porenwassers und die Ausbildung hydrothermaler Bedingungen in den Feuerbetonen ist klar erkennbar.

S5. In der Schüttung des MCC-A fehlt S5, für den intakten Feuerbeton MCC-A lässt sich S5 hingegen beobachten. Dies zeigt, dass Gibbsit (AH₃) im Feuerbeton MCC-A offenbar erst während der Aufheizung durch Nachhydratation entsteht und nicht schon in der Abbindephase, aufgrund der verzögernden Wirkung des Acrylats.

In dem intakten Feuerbeton MCC-PC wird S5 beobachtet (intensives Minimum bei 294 °C), ebenso in der entsprechenden Schüttung, hier allerdings schon bei 260 °C. Gibbsit konnte also schon beim Abbinden des MCC-PC gebildet werden, in Übereinstimmung mit der im Vergleich zu Acrylat nur wenig ausgeprägten verzögernden Wirkung des PC. In dem intakten Feuerbeton erhöht der entstehende Porendruck die thermische Stabilität von Gibbsit.

in dem Feuerbeton MCC-P+Z wird Gibbsit aufgrund des hohen Porendrucks in AH (Böhmit) + Wasser umgewandelt. In der entsprechenden Schüttung kann sich aufgrund des fehlenden Porendrucks kein Böhmit bilden, es wurde ein intensives Signal S5 in der Schüttung festgestellt. Unter Berücksichtigung der Ergebnisse für MCC-A muss also angenommen werden, dass in MCC-P+Z der Gibbsit schon beim Abbinden gebildet wurde.

S6. Das Signal der thermischen Zersetzung von C₃AH₆ ist nur in der Schüttung MCC-PC erkennbar und hier auch nur gering intensiv. In den Schüttungen der beiden anderen MCC wird S6 nicht festgestellt. Dies ist ein Hinweis darauf, dass sich C₃AH₆ bevorzugt in den intakten Feuerbetonen und erst während der Aufheizung und in der Gegenwart von Porenwasser und erhöhten Porendruck bilden konnte (Nachhydratation).

Auch diese Beobachtung ist ein Indiz dafür, dass S1 durch Nachhydratation ausgelöst wird, denn bei einer Nachhydratation von CA-Zement bei ca. 100 °C (S1) kann als CAH-Phase nur C₃AH₆ gebildet werden, keinesfalls die metastabilen Phase CAH₁₀ oder C₂AH₈. Eine Nachhydratation findet in den entsprechenden Schüttungen nicht statt und entsprechend fehlt hier C₃AH₆. Das Auftreten von S2 und S3 und das Fehlen von S6 in den Schüttungen (außer Schüttung MCC-PC) zeigt zudem an, dass bei der gewählten MMH-Aufheizrate keine Umwandlung der metastabilen CAH-Phasen in C₃AH₆ stattfindet, die metastabilen CAH-Phasen geben nur ihr Kristallwasser ab. Das Auftreten von S6 in der Schüttung MCC-PC deutet darauf hin, dass C₃AH₆ hier schon beim Abbinden des MCC-PC gebildet wurde.

S7. Aufgrund des fehlenden Porendrucks fehlt S7 (thermische Zersetzung von AH) naturgemäß in den Schüttungen.

Das mit dem Acrylat in Verbindung stehende, impulsförmige Signal bei 510 °C im Feuerbeton MCC-A fehlt in der entsprechenden Schüttung, obwohl Acrylat in der Siebfraktion 0-1 mm angereichert sein

sollte. Möglich erscheint es, dass die höhere Verfügbarkeit von Sauerstoff in der Schüttung eine Oxidation bei 300-400 °C ermöglicht hat (breiter Peak in der MMH-Kurve der Schüttung), während im intakten Feuerbeton vermutlich nicht ausreichend Sauerstoff zur Verfügung stand, so dass es dann bei ca. 510 °C zu einer Zersetzungsreaktion von Acrylat oder daraus hervorgegangenen Substanzen gekommen ist.

LCC

Wie bei den MCC tritt auch bei den LCC-Schüttungen (Bild 62) das Signal "V" bei T<100 °C auf, das auf die Verdunstung von Wasser hinweist. Entsprechend ist in den Schüttungen bei ca. 100 °C kein Wasser mehr vorhanden, so dass hier, im Gegensatz zu den intakten LCC-Feuerbetonen, kein S1 (Nachhydratation von reliktischem Zement) beobachtet wird.

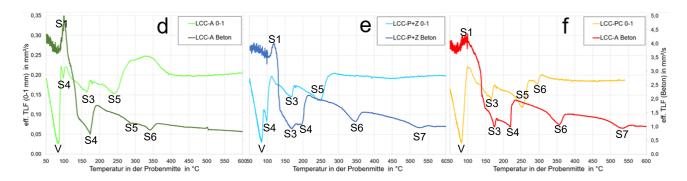


Bild 62 MMH-Kurven der LCC-Feuerbetone im Vergleich zu den aus ihnen hergestellten Schüttungen (abgesiebte Kornfraktion 0-1 mm). Die effektiven Temperaturleitfähigkeiten der Schüttungen (Skalierung rechte Seite) liegen etwa eine Größenordnung niedriger als die der Feuerbetone (Skalierung linke Seite). Bedeutung der Signale S1-S7 siehe Text; V=Verdunsten von Porenwasser.

Signal S2 (thermische Zersetzung von CAH₁₀) ist in den LCC-Schüttungen nicht festzustellen, im Gegensatz zu den an Zement reicheren MCC-Schüttungen. S3 (thermische Zersetzung von C₂AH₈) tritt in den MMH-Kurven der LCC-Schüttungen und der entsprechenden Feuerbetone auf und wird, wie schon bei den MCC, nicht erkennbar beeinflusst vom Wasserdampfdruck. S4 fehlt in den Schüttungen LCC-A und LCC-PC, weil restliches freies Wasser schon bei T < 100 °C verdampft ist (Signal "V"). S5 (thermische Zersetzung von Gibbsit, AH₃) ist in allen drei LCC-Schüttungen deutlich ausgeprägt (bei ~250 °C). In den intakten LCC-Feuerbetonen ist S5 dagegen nur bei LCC-A und in geringer Intensität festzustellen, weil Gibbsit in den Feuerbetonen LCC-PC und LCC-P+Z aufgrund des hohen Porendrucks in Böhmit + Wasser umgewandelt wurde (S4 jeweils bei deutlich > 200 °C zeigt hydrothermale Bedingungen mit Drucken über 15 bar an). Das Auftreten von S5 in LCC-A deutet an, dass Gibbsit beim Abbinden entstehen konnte. Dies steht im Gegensatz zu MCC-A, für dessen Schüttung kein S5 festgestellt wurde und in dem beim Abbinden offenbar kein Gibbsit gebildet wurde.

In den Schüttungen tritt S6 (thermische Zersetzung von C₃AH₆) nur in LCC-PC auf, und hier auch nur

mit geringer Intensität. Es hat den Anschein, dass sich C₃AH₆ in den Feuerbetonen erst durch den entstehenden Porendruck oder während der Nachhydratation bilden konnte, die in den Schüttungen nicht stattfindet. Ebenso fehlt S7 (thermische Zersetzung von Böhmit) in den Schüttungen LCC-PC und LCC-P+Z, weil sich in diesen nicht der zur Bildung von Böhmit notwendige Porendruck aufbauen kann, im Gegensatz zu den Feuerbetonen LCC-PC und LCC-P+Z.

ULCC

Der Vergleich der MMH-Kurven der ULCC F-Schüttungen mit denen der ULCC F-Feuerbetone zeigt (Bild 63), dass auch hier in den noch feuchten Schüttungen Porenwasser bei T<100 °C verdunstet (Signal "V" in den MMH-Kurven), während sich in den entsprechenden Feuerbetonen ein Porendruck aufbaut, der Porenwasser in den hydrothermalen Bereich ab 100 °C bis zum jeweiligen Signal S4 (Ende des Siedeintervalls in den ULCC bei 150 – 170 °C) stabilisiert.

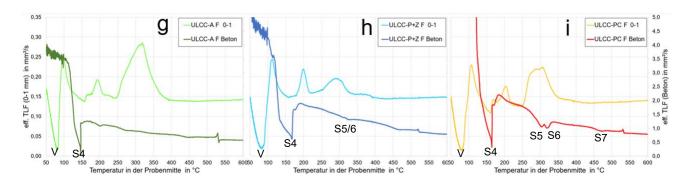


Bild 63: MMH-Kurven der ULCC-Feuerbetone im Vergleich zu den aus ihnen hergestellten Schüttungen (abgesiebte Kornfraktion 0-1 mm). Die effektiven Temperaturleitfähigkeiten der Schüttungen (Skalierung rechte Seite) liegen etwa eine Größenordnung niedriger als die der Feuerbetone (Skalierung linke Seite). Bedeutung der Signale S1-S7 siehe Text; V=Verdunsten von Porenwasser.

Das Signal S1 fehlt in den intakten ULCC-Feuerbetonen aufgrund des geringen Gehalts an Zement und in den Schüttungen auch aufgrund der Abwesenheit von Porenwasser bei ~100 °C. Bei höheren Temperaturen treten in den Schüttungen Signale auf, die offensichtlich im Zusammenhang stehen mit den enthaltenen PP-Fasern. Diese Signale treten in den faserfreien Schüttungen (LCC, MCC) nicht auf, abgesehen von den Acrylat-verflüssigten Versätzen, in denen sich das Acrylat offenbar in einem ähnlichen Temperaturbereich zersetzt wie das Polypropylen der Fasern. In der Schüttung ULCC-PC deutet das Auftreten der Signale S5 und S6 auf einen höheren primären (nach Abbinden) Hydratationsgrad hin als in ULCC-A und ULCC-PC.

5.6. Laser Flash Analyse LFA (FGF)

Mit den LFA-Untersuchungen wurde die Änderung der Temperaturleitfähigkeit (TLF) der Feuerbetone bei konstanter Temperatur über die Zeit ermittelt und daraus die Zersetzungsgeschwindigkeit von

Hydratphasen bei konstanter Temperatur abgeleitet. Der Ansatz beruhte darauf, dass sich durch die Zersetzung einer Hydratphase die Porosität der Feuerbetone erhöht und sich dadurch die TLF verringert. Basierend auf diesem Effekt sollte die Zersetzungsgeschwindigkeit (Kinetik) bestimmter Hydratphasen in Feuerbetonen bei ausgewählten Temperaturstufen (isotherm) untersucht werden.

Zunächst wurden zur Untersuchung der Größe des Effekts der Entwässerung auf die Temperaturleitfähigkeit LFA- und MMH-Messungen in zwei Aufheizungen am jeweils verwendeten Prüfkörper durchgeführt (Kapitel 5.6.1). Die Auswirkung der im entwässerten Zustand erhöhten Porosität auf die TLF im Vergleich zum (teil-)hydratisierten Zustand wurde in den Ergebnissen der Messungen der zweiten Aufheizung erkennbar.

Zur Untersuchung der Zersetzungsgeschwindigkeit bestimmter CAH-Phasen wurde mit LFA anhand einer Serie von Messungen bei konstanter Ofentemperatur untersucht, wie sich die TLF in Folge der Zersetzung einer Hydratphase über die Zeit verändert (Kapitel 5.6.2).

5.6.1. Einfluss der sich durch Hydratzersetzung ändernden Porosität auf die TLF

Als Vorbereitung zur Untersuchung der Zersetzungsgeschwindigkeit von Zementhydratphasen im Feuerbeton (über einen längeren Zeitraum bei konstanter Temperatur) wurde mit LFA und MMH der Einfluss der Zersetzung der Hydratphasen auf die TLF des Feuerbetons gemessen. Zu diesem Zweck wurden mit beiden Methoden Messungen bei verschiedenen Temperaturen in jeweils zwei aufeinander folgenden Aufheizungen bis 650 °C am selben Prüfkörper durchgeführt (Bild 64). Zu Beginn der Messungen während der zweiten Aufheizung liegt der Prüfkörper folglich jeweils vollständig dehydratisiert und mit entsprechend erhöhter Porosität vor. Die Differenz der Temperaturleitfähigkeiten der ersten und der zweiten Aufheizungen zeigen daher den Einfluss der neu entstandenen Porosität auf die TLF. Ist dieser Effekt deutlich ausgeprägt besteht prinzipiell die Möglichkeit, die Kinetik der Entwässerungsprozesse über die sich bei konstanter Temperatur über die Zeit verändernde TLF zu untersuchen.

Für die Untersuchungen wurde der RC-Modellfeuerbeton ausgewählt, weil er den höchsten Anteil an Hydratphasen aufweist und somit den Effekt der Entwässerung der Hydratphasen auf die TLF besonders deutlich zeigen sollte. Die Ergebnisse für die erste und die zweite Aufheizung des RC mit MMH und LFA sind in Bild 64 dargestellt. Die Ergebnisse der Messung der zweiten Aufheizung zeigen, dass hier die TLF des RC im Temperaturbereich bis 300 °C deutlich niedriger liegt als in der ersten Aufheizung. Für den grundsätzlich abfallenden Verlauf der TLF mit ansteigender Temperatur ist auch der Einfluss der hohen Kristallinität des Probenmaterials zu berücksichtigen, denn die Temperaturleitfähigkeit kristalliner Materialien (hier im wesentlichen Korund) verringert sich mit ansteigender Temperatur/WSH90/. In der ersten Aufheizung fällt die TLF im Temperaturbereich bis 300 °C deutlich steiler ab als in der zweiten Aufheizung. Die Differenz der TLF der beiden Aufheizungen zeigt somit den Einfluss der nach der Entwässerung erhöhten Porosität. Wie in Bild 64 erkennbar, fehlen in der

MMH-Kurve der zweiten Aufheizung die Signale, die in der ersten Aufheizung durch Phasenumwandlungen im Zuge der Entwässerung der Hydratphasen auftreten. Dies belegt den porenwasser- und hydratphasenfreien Zustand des Materials während der zweiten Aufheizung. Zudem stimmen die mit MMH und mit LFA ermittelten Temperaturleitfähigkeiten der zweiten Aufheizung ab 300 °C, nachdem das meiste Wasser den RC verlassen hat, mit den Werten der ersten Aufheizung nahezu überein (abgesehen von den Temperaturintervallen der ersten Aufheizung in denen MMH-Signale die TLF-Kurve bestimmen).

Bild 64: Temperaturleitfähigkeiten des RC, gemessen mit MMH und LFA, jeweils in zwei aufeinander folgenden Aufheizungen an den Prüfkörpern.

Die Entwässerungsschritte haben also bis 300 °C effektiv zu einer Verringerung der TLF geführt. Der Beitrag der mit den MMH-Signalen S6 (355 °C) und S7 (550 °C) stattfinden Entwässerungsreaktionen auf die Verminderung der TLF ist offenbar nicht messbar, obwohl sie sehr intensive Signale in der MMH-Kurve ausgelöst haben und die Ergebnisse der TG (Bild 50) die mit ihnen im Zusammenhang stehende Entwässerung belegt. Dieses unerwartete Ergebnis hatte Konsequenzen für den vorgesehenen Einsatz der LFA-Methode zur Bestimmung der Zersetzungskinetik der Zementhydratphasen. Denn für die Zersetzungsreaktionen in den verflüssigten Modellfeuerbetonen, die deutlich weniger Zementhydratphasen enthalten als der RC, kann dann zumindest oberhalb 300 °C nicht mit einem Effekt von Entwässerungsprozessen auf die TLF gerechnet werden.

Ein weiterer Nachteil der LFA-Methode gegenüber MMH wird in Bild 64 erkennbar: MMH liefert die TLF als eine kontinuierliche Kurve in Abhängigkeit von der Temperatur, während eine Serie von LFA-Messungen zur Bestimmung der Zersetzungskinetik einer Hydratphase bei konstanten (isothermen)

Bedingungen stattfinden muss. Somit lässt sich über LFA nur mit sehr hohem Messaufwand (isotherme Messerien bei verschiedenen Temperaturen) erkennen, ob die beobachtete Abnahme der TLF (Bild 64, gemessen mit LFA) kontinuierlich oder tatsächlich stufenförmig erfolgt, so wie es sein sollte im Fall der thermischen Zersetzung einer CAH-Phase in einem engen Temperaturintervall. Verschiedene Prüftemperaturen für LFA müssen entsprechend nahe beieinander liegen, was grundsätzlich einen erheblichen Messaufwand benötigt, um die gewünschte Auflösung zu erreichen.

Eine stufenartige Verringerung der während der ersten Aufheizung eines RC-Prüfkörpers mit LFA ermittelten TLF wurde lediglich im Temperaturintervall zwischen 230 und 250 °C festgestellt (Bild 64). Allerdings zeigt die entsprechende MMH-Messung in diesem Temperaturintervall kein Zersetzungssignal, was einen Hinweis auf den Einfluss der Abmessungen (Länge, Durchmesser) des in beiden Methoden jeweils verwendeten Prüfzylinders auf zumindest die hier konkret zugrunde liegende Entwässerungsreaktion darstellt.

5.6.2. Untersuchung der Kinetik der Zersetzung der Hydratphasen mit LFA

Vorbereitende MMH-Untersuchungen. Zur Auswahl relevanter Messtemperaturen für LFA wurde mit MMH untersucht, bei welchen Phasenumwandlungen die Umwandlungstemperatur von der Aufheizrate abhängt. Eine solche Abhängigkeit würde bedeuten, dass die betreffende thermische Zersetzung erkennbar kinetisch beeinflusst ist, denn kinetisch kontrollierte Reaktionen laufen bei höherer Temperatur schneller ab als bei einer niedrigeren. Während der dynamischen MMH-Messung werden im zeitlichen Verlauf einer solchen Reaktion zunehmend höhere Temperaturen erreicht, so dass sich die Reaktionsrate kinetisch kontrollierter Reaktionen beschleunigt. Daher sollte das MMH-Signal einer solchen Reaktion mit einer schnellen Aufheizrate bei einer höheren Temperatur auftreten als bei einer langsameren Aufheizrate. Mit einer schnelleren Aufheizrate werden also höhere Reaktionstemperaturen (Zersetzungstemperaturen der CAH-Phasen) ermittelt. Allerdings wird sich bei einer schnellen Aufheizrate auch ein höherer Porendruck einstellen, der zusätzlich die thermische Stabilität von Hydratphasen (z. B. AH und C₃AH₆, Kapitel 2.1) erhöht. Die Umwandlungstemperatur einer Reaktion, die nicht kinetisch kontrolliert ist (z.B. die spontan bei 573 °C ablaufende Umwandlung von ß-Quarz in α-Quarz), würde keine Abhängigkeit von der MMH-Aufheizrate zeigen.

Für die Untersuchungen wurden zunächst MMH-Messungen an dem RC-Modellfeuerbeton mit verschiedenen Aufheizraten durchgeführt. Der RC-Modellfeuerbeton wurde gewählt, weil er aufgrund seines hohen Gehalts an Zementhydratphasen deren Zersetzung und damit auch den Einfluss der Aufheizrate am deutlichsten zeigen sollte (Bild 65).

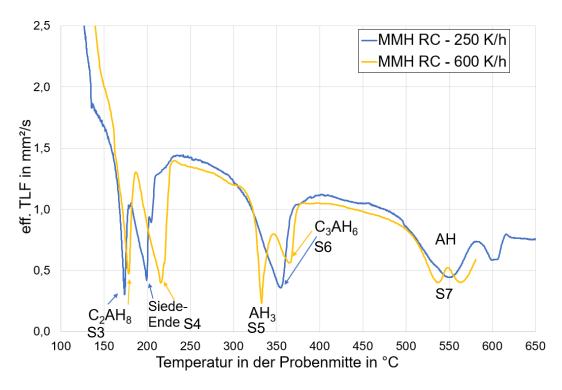


Bild 65: MMH-Kurven für den RC-Modellfeuerbeton mit zwei verschiedenen Aufheizraten.

Die Ergebnisse für zwei verschiedene Aufheizraten (250 K/h und 600 K/h) zeigen, dass das Auftreten von MMH-Signalen jeweils nicht nur durch die Kinetik bestimmter Reaktionen beeinflusst ist, sondern offenbar auch durch den Porendruck im Feuerbeton, der bei gleicher Temperatur höher ist bei einer schnelleren Aufheizrate. Der Porendruck hat einen Einfluss auf die thermische Stabilität der Hydratphasen, so dass einerseits eine Verschiebung eines MMH-Signals bei unterschiedlichen Aufheizraten beobachtet werden kann (ΔT für S6=C₃AH₆), so dass aber auch verschiedene Reaktionen ausgelöst werden können (S5=AH₃ nur mit 600 K/h).

Das erste im Temperaturverlauf auftretende Signal S3 (Bild 65, thermische Zersetzung von C₂AH₈) wird kaum von der Aufheizrate beeinflusst. Das Siedeintervall, d. h. das Temperaturintervall zwischen 100 °C und dem Signal S4 bei der Temperatur, bei der das letzte Porenwasser unter hydrothermalen Bedingungen absiedet, verlängert sich mit der schnelleren Aufheizrate um ca. 20 K (von ~200 °C auf ~220 °C). Dies bedeutet, dass bei der schnelleren Aufheizrate der Porendruck beim Absieden des letzten Porenwassers von ~15 bar bei 200 °C bis auf ~23 bar bei 220 °C ansteigt, berechnet nach der Antoine-Gleichung (Bild 4). Die Verschiebung von S4 ist daher eine Folge des höheren Porendrucks bei der schnelleren Aufheizrate.

Mit der schnelleren Aufheizrate liegt S5 (thermische Zersetzung von Gibbsit) bei ~330 °C, mit der langsameren Aufheizrate fehlt das entsprechende MMH-Signal. Offenbar hat der Gibbsit mit der langsameren Aufheizrate genügend Zeit, sich vollständig in Böhmit (AH) + H₂O zu zersetzen, wobei auch der mit der langsameren Aufheizrate entstehende Porendruck schon ausreicht, um die Umwandlung von Gibbsit in Böhmit zu ermöglichen. Mit der langsamen Aufheizrate folgt dann bei ~355 °C das

Signal S6 (thermische Zersetzung von C₃AH₆), mit der schnelleren Aufheizrate erscheint dieses bei ~365 °C, also bei geringfügig höherer Temperatur. Für die thermische Zersetzung von AH (Böhmit) lässt sich kein eindeutiger Unterschied für beide Aufheizraten feststellen. Insgesamt betrachtet ist der Einfluss der Aufheizrate auf die thermische Zersetzung der Zementhydratphasen geringer als erwartet. Von größerer Bedeutung ist der Einfluss der Aufheizrate auf die Temperatur (S4), bis zu der siedendes Porenwasser vorhanden ist sowie in Folge auf den Porendruck. Demnach ist dieser Effekt in Bezug auf die Bildung (gefährlich) hoher Porendrucke und Aufheizschäden wichtiger als die Zersetzungskinetik der Hydratphasen.

LFA-Messungen. Für die Messungen mit LFA zur Untersuchung des Einflusses der sich im RC-Modellfeuerbeton zersetzenden CAH-Phasen auf die TLF wurden die Prüftemperaturen basierend auf den MMH-Ergebnissen für den RC (Bild 65) so ausgewählt, dass sie etwas niedriger, gleichauf und etwas höher lagen als die mit MMH ermittelten Temperaturen bestimmter Zersetzungsreaktionen. Die so ausgewählten LFA-Prüftemperaturen 150 °C, 230 °C und 250 °C umspannen die Signale S3 und S4. Das fortwährende Sieden überlagert S3, bis bei S4 das Siedeende erreicht ist. Daher lassen sich S3 und S4 hier nicht trennen. Messungen bei 270 °C liegen nahe bei der Temperatur, bei der die während der ersten und der zweiten Aufheizung mit MMH ermittelten TLF gleich sind.

In Bild 66 sind die Temperaturleitfähigkeiten dargestellt, die für die Serien von Einzelmessungen bei den angegebenen konstanten Temperaturen ermittelt wurden. Hier zeigt sich erwartungsgemäß und entsprechend den MMH-Ergebnissen (Bild 65), dass für jede höhere Temperaturstufe die TLF niedriger liegt, aufgrund der Einflüsse der Kristallinität und der sich mit zunehmender Entwässerung erhöhenden Porosität. Es ist aber nicht sicher erkennbar, dass sich die TLF innerhalb einer Messserie bei konstanter Temperatur über die Zeit verringert. Es lässt sich also kein Trend in den LFA-Einzelergebnissen erkennen, der in Übereinstimmung wäre mit der erwarteten Abnahme der TLF über die Dauer der Messserie in Folge einer langsam ablaufenden Entwässerungsreaktion.

Die Ergebnisse für den an Zementhydratphasen reichen RC-Modellfeuerbeton zeigen (Bild 66), dass die Kinetik der Zersetzungsreaktionen der Hydratphasen der MCC, LCC und ULCC mit LFA nicht zu ermitteln ist, weil der Effekt (Verminderung der TLF über die Zeit infolge allmählicher Hydratzersetzung) schon bei dem RC-Modellfeuerbeton zu gering ist. Zur Absicherung wurde dennoch der mit Acrylat verflüssigte LCC-A mit der für den RC dargestellten Vorgehensweise mit LFA untersucht. Auch hier dienten die MMH-Ergebnisse als Grundlage zur Auswahl der Messtemperaturen für die LFA-Untersuchungen. Die MMH-Signale (S1 bis S7) und deren Bedeutung wurden in Kapitel 5.4 beschrieben. LFA-Messungen wurden wieder bei Temperaturen durchgeführt, die etwas niedriger, gleichauf und über den Temperaturen der MMH-Signale liegen (Probe 1 in Bild 67). Wie schon zuvor für den RC festgestellt, vermindert sich die mit LFA ermittelte TLF zwar im Zuge der Entwässerung. Allerdings ist der mit zunehmender Prüftemperatur fallende Verlauf der mit LFA ermittelten TLF nicht stufenförmig, wie es aufgrund der diskreten MMH-Signale zu erwarten gewesen wäre.

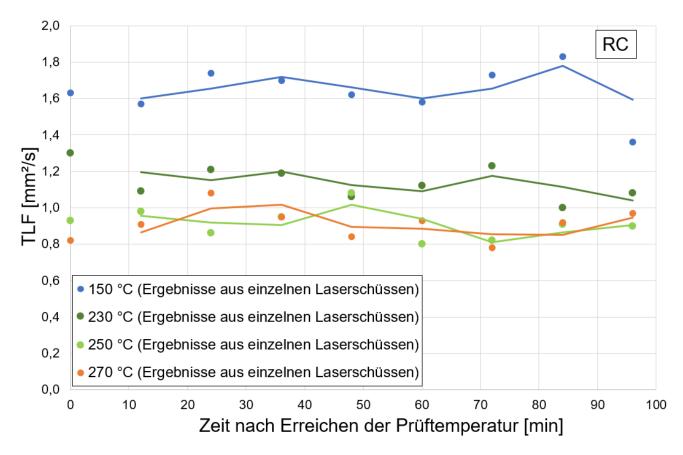


Bild 66: Zeitliche Entwicklung der Temperaturleitfähigkeiten (LFA) bei konstanten Temperaturen. Die Ausgleichslinien entsprechen dem gleitenden Durchschnitt zweier Messpunkte.

Anschließend wurde an zwei weiteren Prüfkörpern untersucht, ob sich die mit LFA gemessene TLF bei konstanter Temperatur über die Zeit verändert. Ziel war es wieder herauszufinden, ob bei einer bestimmten Temperatur, die etwas niedriger liegt als die mit MMH festgestellte Zersetzungstemperatur einer Hydratphase, die TLF über die Zeit sinkt und so Aussagen zur Zersetzungskinetik der entsprechenden Hydratphase getroffen werden können. Dazu wurde bei jeder Prüftemperatur eine Serie von 6 LFA-Einzelmessungen bei konstanter Temperatur durchgeführt. Um eine mögliche Verringerung der TLF über die Haltezeit (durch Zersetzung einer Hydratphase) auch bei einer gewissen Streuung der Einzelwerte zu erkennen, wurde der Mittelwert der für die Messungen 1-3 ermittelten TLF verglichen mit dem Mittelwert der TLF für die Messungen 4-6 (Messungen 1-3 bzw. 4-6 an Probe 2 in Bild 67). Auch hierbei ergab sich keine eindeutige Tendenz, die auf eine über die Dauer der Messserie hinweg abfallende TLF hinweisen würde. Lediglich bei 150 °C und 180 °C liegt der Mittelwert der LFA-Messungen 4-6 geringfügig niedriger als bei den Messungen 1-3. Die Verringerung ist aber so gering, so dass nicht von einer systematischen Verminderung der TLF über den Verlauf von 6 Einzelmessungen gesprochen werden kann.

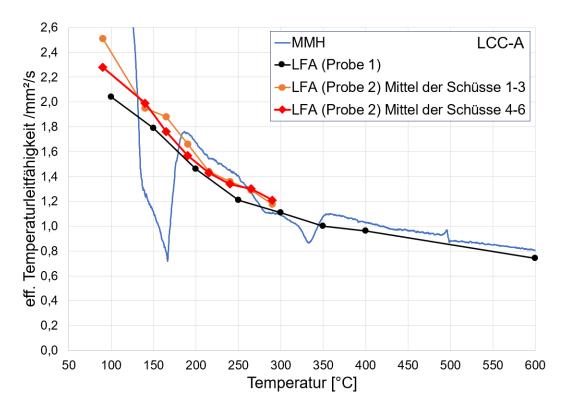


Bild 67: Die TLF des LCC-A verringert sich deutlich mit ansteigender Temperatur. Im Bereich der intensiven MMH-Signale, die im Zusammenhang stehen mit Entwässerungsreaktionen im Prüfkörper, sind in den LFA-Ergebnissen keine stufenförmigen Verminderungen der LFA-Ergebnisse zu erkennen.

Fazit der LFA-Messungen zur Untersuchung der Kinetik der Zersetzung von Hydratphasen. Es wurde festgestellt, dass sich mit der Entwässerung der Feuerbetone deren Temperaturleitfähigkeit wie erwartet verringert. Entgegen der Erwartung ist der Effekt ist jedoch nicht dazu geeignet, die Zersetzungskinetik der Hydratphasen mit LFA zu ermitteln. Schon mit MMH wurde festgestellt, dass die thermische Zersetzung der CAH-Phasen offenbar nicht in hohem Maße kinetisch beeinflusst wird. Daher war es auch nicht möglich, zu beobachten, wie sich die Temperaturleitfähigkeit bei konstanter Temperatur mit der Zeit verringert. Vielmehr ist es bei LFA-Messungen offenbar so, dass sich die Temperaturleitfähigkeit in Folge einer sehr zügigen Entwässerung der Prüfkörper bereits mit Erreichen der Prüftemperatur verringert hat. Dies hat folgende Ursachen:

- Die zu untersuchende Entwässerungsreaktion war sehr schnell und bis zum Erreichen der notwendigen Konstanz der angesteuerten Prüftemperatur, also schon vor dem Start der ersten LFA-Messung bei der angesteuerten Temperaturstufe, schon abgelaufen.
- Während bei MMH die TLF dynamisch während der kontinuierlichen Aufheizung ermittelt wird, erfolgen die Messungen mit LFA bei konstanten Temperaturen. Die LFA-Proben sind aber offenbar zu klein, um während der notwendigen Haltezeiten für eine Serie von Einzelmessungen einen inneren Porendruck aufrecht zu halten, so wie es bei MMH bis zu höheren Tempe-

- raturen der Fall ist. Somit verlaufen die vom Porendampfdruck beeinflussten Entwässerungsreaktionen im LFA-Prüfkörper bei tendenziell niedrigeren Temperaturen ab als bei MMH. Daher kann MMH nicht als Grundlage zur Auswahl der Prüftemperaturen für LFA dienen. Das kontinuierliche Aufheizen in MMH ist jedoch näher an der betrieblichen Praxis.
- In den Temperaturintervallen, in denen anhand der MMH-Messung keine Reaktionen ablaufen, stimmen die mit LFA und MMH ermittelten effektiven Temperaturleitfähigkeiten gut überein, also insbesondere auch in den Werten für zweite Aufheizungen. Dies untermauert den grundsätzlichen Wert beider Methoden zur Bestimmung der Temperaturleitfähigkeit von vollständig getrockneten Feuerbetonen.

Insgesamt betrachtet zeigte sich, dass die mit verschiedenen Aufheizraten durchgeführte MMH-Untersuchungen und mit den dadurch ausgelösten Veränderungen der Signale in den MMH-Kurven, die mit Phasenumwandlungen (incl. der Siedephase des Porenwassers) im Zuge der Entwässerung im Zusammenhang stehen, aussagekräftigere Ergebnisse zum Entwässerungsverhalten der Feuerbetone gewonnen werden können als mit LFA.

5.7. Radar-Untersuchung der Modelbetone (HS Koblenz)

Die Radar-Untersuchungen wurden an 5 der Modellfeuerbetone (RC, LCC-A, LCC-P+Z, LCC-PC und MCC-A) durchgeführt, siehe Bild 68 bis Bild 72. An allen entwickelten Modellfeuerbetonen wurde vor den Radar-Untersuchungen die Explosionsneigung erprobt (siehe Kapitel 5.3). Obwohl alle Feuerbetone mit Ausnahme der faserfreien ULCC den Explosionstest unbeschadet überstanden, explodierten Proben des ULCC-A und des MCC-A während der Radar-Untersuchungen.

Alle Untersuchungen für die RC- und die LCC-Modellfeuerbetone erfolgten in Doppelbestimmung. Für den MCC-A wurde nur eine Messung durchgeführt, weil es bei der Wiederholungsmessung zur Explosion des Prüfkörpers während der Untersuchung kam. Die graphischen Darstellungen der Ergebnisse zeigen jeweils die Amplitude des Radarsignals (dB) und den Gewichtsverlust der Probe (%) in Abhängigkeit von einer gemeinsamen Bezugstemperatur. Ein Thermoelement wurde nicht in die Prüfkörper eingebracht, damit das elektromagnetische Feld der Radarstrahlung nicht beeinflusst wird. Die Temperaturangaben beziehen sich daher auf die Temperatur der Heizplatte.

In Bild 68 sind die Ergebnisse der Untersuchungen des Referenz-Modellfeuerbetons RC mit der Radarmethode dargestellt. Die Aufheizrate betrug 120 K/h. Beide Untersuchungen zeigen zwei markante Hochpunkte im Kurvenverlauf der Amplitude. Für die Mischung RC-9 sind die Hochpunkte 260 °C und 380 °C. Für die Mischung RC-3 liegen die Hochpunkte bei 320 °C und bei 450 °C. Der Anstieg und Abfall der Kurven vor und nach den Hochpunkten verläuft bei beiden Messungen vergleichbar. Der Gewichtsverlust verläuft ab ca. 200 °C Heizplattentemperatur für beide Messungen annährend linear bis zum Ende der Messung bei 600 °C. Die Verschiebung des Kurvenverlaufes

beider Messungen bezogen auf die gemessene Temperatur zeigt eine nicht ausreichende Reproduzierbarkeit der Ergebnisse im Versuchstand. Auch ergaben sich Unterschiede im Kurvenverlauf der Amplitude, die sich auf Grund der geringen Datenlage nicht genauer interpretieren lassen.

Bild 69 zeigt die Ergebnisse der Untersuchung des LCC-A. Die Aufheizrate wurde der Aufheizrate der MMH-Untersuchungen (Kapitel 4.3.10) angepasst. Die Aufheizrate beträgt für den LCC-A 7 120 K/h und für den LCC-A 8 250 K/h. Beide Messungen zeigen einen Anstieg der Amplitude ab ca. 350 °C mit einem Hochpunkt bei ca. 420 °C. Das Messsignal für den LCC-A 7 bricht durch einen Messfehler ab. Der Gewichtsverlust steigt ab ca. 220 °C für beide Messdurchläufe an und erreicht bei 420 °C einen Hochpunkt. Der anschließende Abfall ist als Messfehler anzusehen.

In

Bild 70 sind die Ergebnisse der Untersuchung des LCC-P+Z dargestellt. Für beide Messungen betrug die Aufheizrate 250 K/h. Die Kurvenverläufe der Amplitude zeigen zu Beginn der Aufheizung einen leicht ansteigenden linearen Verlauf. Bei ca. 380 °C steigen beide Kurven stark an und erreichen einen Hochpunkt bei ca. 410 °C. Die gemessene Gewichtsveränderung für den LCC P+Z 9 ist unterhalb 250 °C zu fehlerbehaftet für eine Auswertung. Beide Prüfkörper verlieren ab ca. 260 °C an Gewicht. Ab ca. 420 °C zeigt der Gewichtsverlust keine auffälligen Veränderungen mehr.

Die Ergebnisse der Untersuchung des LCC-PC-Modellfeuerbetons sind in Bild 71 dargestellt. Die Aufheizrate betrug für beide Untersuchungen 250 K/h. Für beide Messungen steigt die Amplitude ab 300 °C linear an. Ab 450 °C bzw. 490 °C nimmt die Amplitude stark zu bis 520 °C bzw. 540 °C. Nach dem Hochpunkt flacht die Kurve wieder ab. Der Gewichtsverlust beginnt bei ca. 260 °C und zeigt einen annährend linearen ansteigenden Verlauf bis zum Ende der Messung bei 600 °C.

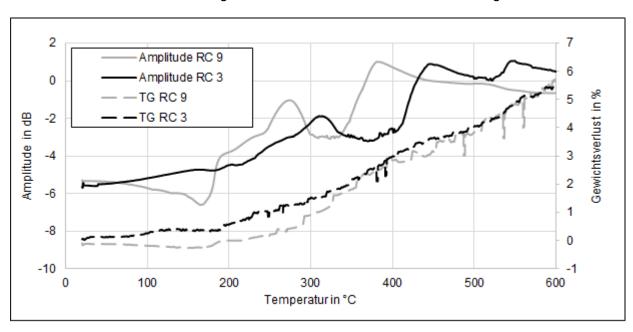


Bild 68: Amplitude des Radarsignals (dB) und Gewichtsverlust (%) des Prüfkörpers über der Temperatur (°C) der Heizplatte unterhalb der Probe. Die durchgehende Linie zeigt den Verlauf der Amplitude. Die gestrichelte Linie zeigt die Entwicklung des Gewichtsverlustes für den RC-Modellfeuerbeton in Doppelbestimmung. Die Aufheizrate betrug 120 K/h.

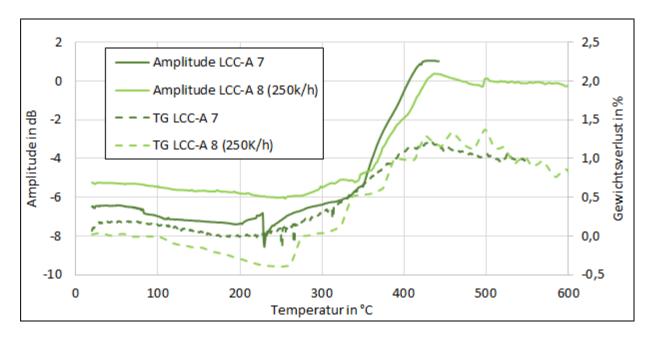


Bild 69: Amplitude des Radarsignals (dB) und Gewichtsverlust (%) des Prüfkörpers über der Temperatur (°C) der Heizplatte unterhalb der Probe. Die durchgehende Linie zeigt den Verlauf der Amplitude. Die gestrichelte Linie zeigt die Entwicklung des Gewichtsverlustes. Die Aufheizrate betrug 120 k/h für LCC A7 und 250 K/h für LCC A8.

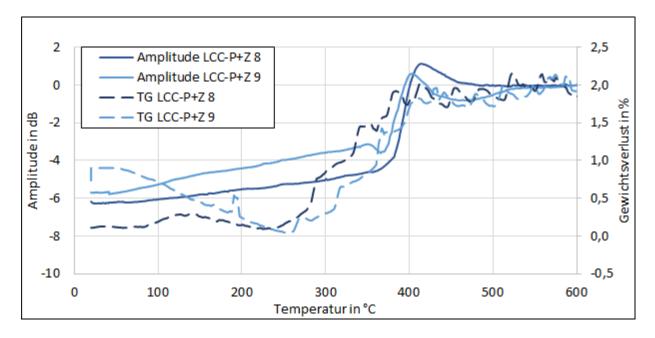


Bild 70: Amplitude des Radarsignals (dB) und Gewichtsverlust (%) der LCC-P+Z-Prüfkörper. Die Aufheizrate betrug 250 K/h.

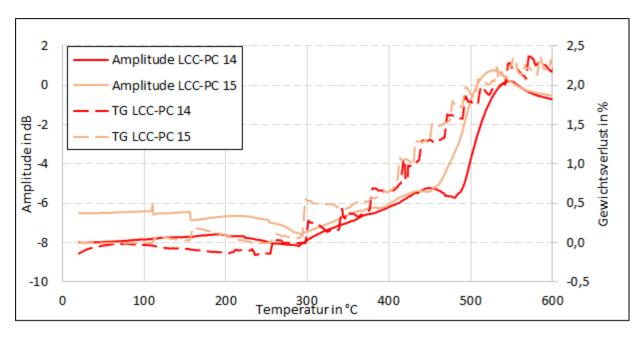


Bild 71: Amplitude des Radarsignals (dB) und Gewichtsverlust (%) der LCC-PC-Prüfkörper. Die Aufheizrate betrug 250 K/h.

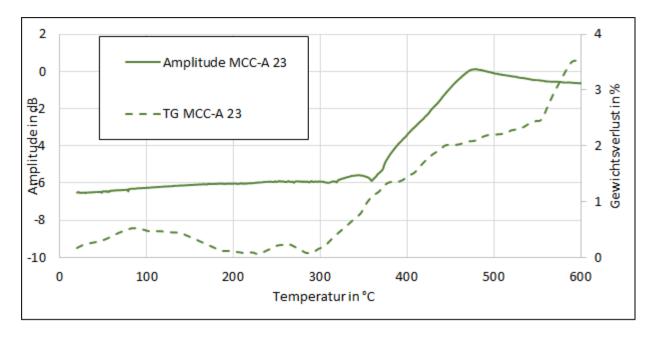


Bild 72: Amplitude des Radarsignals (dB) und Gewichtsverlust (%) des MCC-A-Prüfkörpers. Die Aufheizrate betrug 250 K/h.

Die Methode zeigt als Ergebnis auch in Doppelbestimmung keine ausreichende Reproduzierbarkeit. Auf Grund der Neuartigkeit der Methode wurden für die Auswertung die Übereinstimmungen der Kurvenverläufe hervorgehoben und Abweichungen zwischen den Messungen als Artefakte angesehen.

Die höhere Explosionsneigung während der Radar-Messung ist durch den Temperaturgradienten innerhalb der Probe während des einseitigen Aufheizens begründet (siehe auch IGF-Vorhaben 19855 N). In der mit der Heizquelle in Kontakt stehenden, heißen Seite des Probematerials kann Wasser

verdampfen, während im oberen, der Heizquelle abgewandten Teil der Probe in den Poren noch Wasser in flüssiger Form vorliegt. Der Abtransport des Wasserdampfes ist dann durch die mit Wasser blockierten Porenkanäle erschwert. In Folge kann es zu einem Druckaufbau im Material kommen, der die Festigkeit des Materials übersteigt und zur Explosion des Prüfkörpers führt. Eine schadensfreie Versuchsdurchführung war nicht gewährleistet. Bei den Explosionen wurde der Versuchsstand erheblich beschädigt.

Die Kurvenverläufe der Amplituden bei den Messungen in Bild 68 sind um ca. 50 °C verschoben. Dies zeigt, dass die Methode mit dem verwendeten Versuchsaufbau nur eingeschränkt reproduzierbar ist. Die TG-Messungen der beiden Versuchsdurchläufe stimmen überein. Der gemeinsame Bezugswert dieser Messungen ist jeweils die Temperatur der Heizplatte. Änderungen der Amplitude können daher nur näherungsweise mit einer Temperatur verknüpft werden. Der RC-Modellfeuerbeton zeigt in MMH-Messungen einen vergleichbaren Hinweis auf eine zu einem niedrigeren Temperaturbereich verschobene Entwässerung (Kapitel 5.4.1). Der Unterschied in der Temperaturzuordnung ist durch die unterschiedlichen Messtellen der Temperatur zu erklären (Probenmitte bei MMH, Heizplatte außerhalb der Probe bei Radar-Methode). Die Aufheizkurven der MMH- und der Radarmethode unterscheiden sich für die Messung des RC-Modellfeuerbetons.

Die TG-Messungen zeigen zum Teil erhebliche Schwankungen und im Temperaturbereich bis 250 °C eine Gewichtszunahme an. Es ist anzunehmen, dass es sich hierbei um ein Messartefakt handelt, das durch Konvektion um die sich erwärmende Heizplatte verursacht wird. Eine weitere Ursache hierfür kann der Standort des Versuchsaufbaus in einem mit einer leistungsstarken Lüftungsanlage ausgestatteten Raum sein. Bei eingeschalteter Lüftung wurde die nicht eingehauste Waage durch Luftströmungen beeinflusst.

Die Messungen des LCC-A wurde mit zwei unterschiedlichen Aufheizkurven (120 K/h und 250 K/h) durchgeführt. Die Messung der Amplitude zeigt dennoch einen ähnlichen Kurvenverlauf bezogen auf die Heizplattentemperatur. Auf Grund der eingeschränkten Reproduzierbarkeit kann ein Einfluss der Heizrate auf die Entwicklung der Amplitude nicht ausgeschlossen werden.

Alle untersuchten LCCs und der MCC-A zeigen zunächst keinen eindeutigen Gewichtsverlust, bis zwischen 250 °C und 300 °C eine Gewichtsabnahme einsetzte. Die parallel zu den MMH-Messungen erfolgten TG-Messungen zeigen diese Gewichtsabnahme bereits bei deutlich niedrigeren Temperaturen. Dieser Unterschied ist mit der unterschiedlichen Temperaturmessstelle der beiden Messmethoden zu erklären.

Der Vergleich der Messung der Amplitude und der TG-Messung zeigt, dass es bei allen LCCs in dem Temperaturbereich, in dem ein signifikanter Anstieg der Amplitude erkennbar ist, auch zu einer deutlichen Abnahme des Gewichtes kommt. Der Anstieg der Amplitude kann als eine Abnahme des flüs-

sigen Wassers im Material durch Verdunsten bzw. Verdampfen interpretiert werden. Die Gewichtsabnahme bestätigt das Entweichen von Wasser aus der Probe.

Die anderen mit der Radarmethode untersuchten Proben (RC und MMC-A) haben einen höheren Wassergehalt (9 % bzw. 6,5 % gegenüber 5,2-5,4 % bei LCC). Der Vergleich der Amplitude mit der TG-Messung für diese Messungen zeigt nicht die gleiche Signifikanz wie für die LCC. Es ist anzunehmen, dass der höhere Wassergehalt zu einer stärkeren Dämpfung des Radarsignals führt und damit die Messqualität herabsetzt. Die Radarmethode detektiert den Trocknungsfortschritt im gesamten Probevolumen, ermöglicht aber keine Zuordnung von genauen Zersetzungstemperaturen und kann keine lokalen Änderungen im Material bestimmen. Durch die einseitige Aufheizung der Proben im Radarversuchstandes schreitet die Trocknung im unteren Teil der Probe schneller voran als im oberen, der Wärmequellen abgewandten, Teil der Probe. Es ist anzunehmen, dass in den unterschiedlichen Bereichen Wasserdampf und Wasser gleichzeitig im Probenkörper vorliegen. Da Wasser im flüssigen Aggregatzustand die Radarstrahlung stark beeinflusst, kann die Radar-Messung erst bei einer vollständigen Überführung des Wassers in die Dampfphase im Prüfkörper eine signifikante Signaländerung detektieren.

Das Radarsystem arbeitet im Reflektionsverfahren. Durch die Bildung einer Trocknungsfront wird vermutlich ein Großteil der Radarstrahlung im oberen Teil der Probe bereits durch das freie Wasser reflektiert und das Radarsignal gedämpft. Die Durchdringung der Probe mit dem Messsignal wird somit herabgesetzt und die Volumenauflösung der Messung verschlechtert.

Ein weiterer Nachteil des Reflektionsverfahren ist, dass kleine Änderungen in der Anordnung von Messkopf, Probe und Versuchstand zu einer diffusen Reflektion des Signals führen können. In seiner bestehenden Form lieferte der Radarversuchstand nicht ausreichend reproduzierbare Messergebnisse für eine genaue Untersuchung des Trocknungsfortschrittes von Feuerbetonen.

5.8. Untersuchung der Eigenschaften der bis zu festgelegten Temperaturstufen aufgeheizten Feuerbetone (HS Koblenz)

Wichtigste Ziele der Untersuchungen waren die Erfassung der sich dynamisch verändernden mineralogischen Zusammensetzung (Röntgenbeugungsanalyse), der Morphologie der Hydratphasen (REM-Analyse), der Festigkeitsentwicklung und der Porenstruktur (Porengrößenverteilung, offene Porosität, Permeabilität) während des ersten Aufheizens der Modellfeuerbetone. Untersucht wurden die Proben nach dem Abbinden (siehe Kapitel 5.2.2 und 5.2.3) und nach Vorbehandlung bei auf Basis der Ergebnisse der MMH-Untersuchungen (siehe Kapitel 5.4) festgelegten Temperaturstufen (siehe Tabelle 12). Die Messreihen umfassen die MCC und LCC, sowohl mit als auch ohne Faserzusatz. Die ULCC-Versätze ohne Fasern konnten nicht schadensfrei aufgeheizt werden. Die ULCC wurden daher mit Faserzusatz untersucht. Dabei zeigte der mit Acrylat verflüssigte Modellfeuerbeton auch mit Fasern eine erhöhte Explosionsneigung. Während die ULCC-A-Probe beim vorausgegangenen

Explosionstest eine Aufheizung mit einer Heizrate von 600 K/h unbeschadet überstand, explodierten aus dem gleichem Modellfeuerbeton hergestellte Prüfkörper zum Teil während des Aufheizens mit einer Aufheizrate von 250 K/h. Begründet werden kann dieses Verhalten mit der unterschiedlichen Probengeometrie. Während die Explosionstests an zylindrischen Prüfkörpern durchgeführt wurden, die denen für die MMH-Untersuchungen entsprechen (ø=50 mm, h=120 mm), wurden für die Radar-Untersuchungen Zylinder mit einer deutlich geringeren spezifischen Oberfläche benötigt (ø=100 mm, h=50 mm).

Durch den geringeren Zementanteil in ULCC und LCC liegt die Konzentration der gebildeten Hydratphasen teilweise unter der Nachweisgrenze der Röntgenbeugungsanalyse. Daher erscheint eine Gegenüberstellung der Mineralphasenanalyse von ULCC, LCC und MCC nicht sinnvoll. Zur Beschreibung des Einflusses der Porosität auf den Bestand an Mineralphasen wurden die in den faserfreien und entsprechenden faserhaltigen MC-Modellfeuerbetonen enthaltenen Anteile an Hydratphasen verglichen.

5.8.1. Mineralphasenanalyse (Rietveld-Verfeinerung)

Die RBA-Mineralphasenanalyse wurde an mit und ohne Fasern hergestellten MC- und LC-Feuerbetonen sowie ULC-Feuerbetonen mit Fasern nach 48 Stunden Auslagerung im Klimaschrank bei 20 °C und 95 % relativer Luftfeuchtigkeit und nach der Behandlung bei festgelegten Maximaltemperaturen (siehe Tabelle 12) durchgeführt. Die Proben wurden gefriergetrocknet, in einer Scheibenschwingmühle feinzerkleinert und anschließend die Partikel > 63 µm abgesiebt. Dadurch wurden Anteile des im Grobkorn enthaltenen Aluminiumoxids und der β-Tonerde substanziell, wenn auch nicht quantitativ, aus den Feuerbetonen entfernt, um auf diese Weise die teils niedrigen Konzentrationen der CAund CAH-Phasen für einen besseren analytischen Nachweis aufzukonzentrieren. In den LC- und ULC-Feuerbetonen erwiesen sich die enthaltenen Mengen an Hydratphasen jedoch als immer noch zu gering für eine quantitative Rietveld-Auswertung. Auch bei den MCC lagen die Massenanteile der gebildeten Hydratphasen teilweise unterhalb der Nachweisgrenze der RBA und können nur näherungsweise bestimmt werden. Zur besseren Vergleichbarkeit der Ergebnisse wurde bei der Rietveld-Verfeinerung für alle Temperaturstufen der gleiche Datensatz möglicher Mineralphasen verwendet. Dies führt dazu, dass rechnerisch auch geringe Mengen von Hydratphasen berücksichtigt werden können, deren Auftreten bei der jeweiligen Temperaturstufe fachlich nicht zu begründen ist (z.B. Böhmit bei Temperaturen unter 180 °C und Wiederauftreten von CAH₁₀ nach Erwärmung auf 300 °C im Falle des faserhaltigen, mit Polycarboxylatether verflüssigten Feuerbetons).

Die Mineralphasenzusammensetzungen wurden ohne Korund und β -Tonerde als Phasenbestandteil verrechnet und somit relativ zueinander ins Verhältnis gesetzt. Bild 73 zeigt daher die temperaturabhängige Entwicklung der Mineralphasenanteile **ohne** Korund und β -Tonerde für alle MC-Feuerbetone in Abhängigkeit vom verwendeten Verflüssiger.

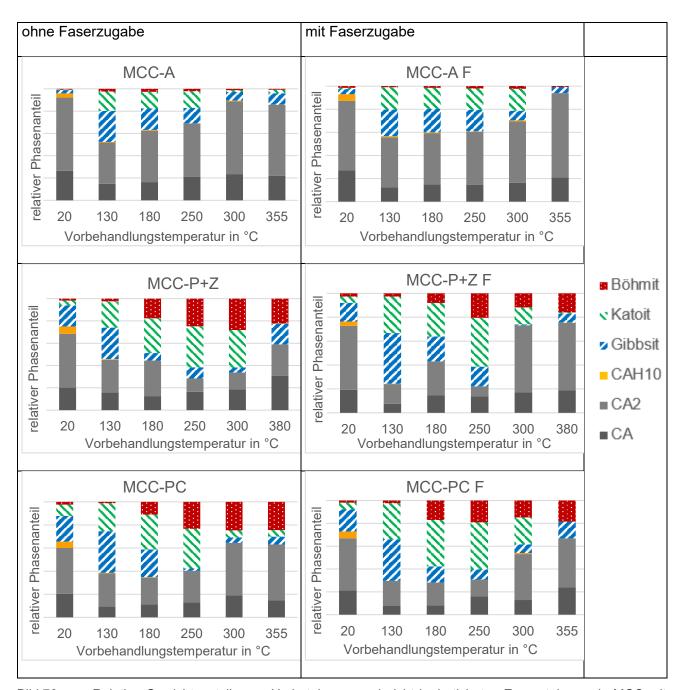


Bild 73: Relative Gewichtsanteile von Hydratphasen und nicht hydratisierten Zementphasen in MCC mit unterschiedlichen Verflüssigern nach 48 Stunden Auslagerung im Klimaschrank und nach anschließendem Aufheizen auf die angegebene Maximaltemperatur (Tabelle 12). Es ist zu beachten, dass nur die kristallinen Bestandteile dargestellt sind und dass Korund sowie β-Tonerde rechnerisch eliminiert wurden, obwohl Korund auch in der Matrix ein Hauptbestandteil ist. Links: ohne Faserzusatz, rechts: mit 0,1 Ma-% PP-Fasern.

Aus Bild 73 wird deutlich, dass sich, bedingt durch den eingesetzten Verflüssiger, bereits nach dem 48stündigen Abbinden bei 20 °C die mineralogischen Zusammensetzungen deutlich unterscheiden. Der Verflüssiger hat somit einen signifikanten Einfluss auf die Lösungsgeschwindigkeit der Zementphasen und die Assoziation der sich bildenden Hydratphasen. Im Einzelnen ergeben sich folgende Zusammenhänge: Der Einsatz von Acrylat als Verflüssiger führt zum geringsten Hydratationsgrad

des Zements, wodurch CA und CA₂ mit zusammen über 95 Ma-% die korundfrei gerechnete Matrix deutlich dominieren. Wie bereits an Zementleimen (siehe Kapitel 5.1) beobachtet, wird die Hydratation während des Abbindens im Klimaschrank durch die Belegung der Zementklinkeroberfläche durch Acrylat unterdrückt. Lediglich CAH₁₀ und Gibbsit (AH₃) sind in etwa gleichen Anteilen nachweisbar. In **MCC-P+Z** steigt die Lösungsrate des Zementklinkers deutlich an. Nach dem Abbinden bei 20 °C bei einer relativen Luftfeuchtigkeit von 95 % sind statt 5 % (MCC-A) bereits 30 % des Zementklinkers in Lösung gegangen. Dabei verdoppelt sich der relative Phasengehalt des CAH₁₀ im Vergleich zu den Feuerbetonen, die mit Acrylat verflüssigt wurden. Für Gibbsit versechsfacht sich der Gehalt. Zudem konnte hier Katoit (C₃AH₆) in Spuren nachgewiesen werden. Im **MCC-PC** steigt die Lösungsrate des Zementklinkers nochmals an. Rund 40 % der Zementphasen liegen nach dem Abbinden in hydratisierter Form vor. Dabei entstehen CAH₁₀ und Gibbsit (AH₃) im ähnlichen Verhältnis wie im MCC-P+Z, der Anteil von Katoit steigt aber überproportional an und erreicht hier rund 10 Ma.-%.

Zudem weisen alle MCC-Varietäten, nach der Lagerung im Klimaschrank, Spuren von Böhmit auf. Im Gegensatz zu den Untersuchungen an Zementleimen (siehe Kapitel 5.1) wurde in keinem der Modellfeuerbetone C₂AH₈ nach Auslagerung im Klimaschrank nachgewiesen. Mögliche Ursachen hierfür sind zu geringe Gehalte dieser Hydratphase oder ihre Zersetzung während des zur Probenvorbereitung notwendigen, intensiven Aufmahlvorgangs. Auch die festgestellte Bildung von Gibbsit während der Abbindephase im Klimaschrank weicht von den Ergebnissen für Zementleime ab. In den Zementleimen wurde Gibbsit erst nach einer Auslagerung bei 100 °C gefunden. Es ist aber anzunehmen, dass Aluminiumhydroxid bereits in amorpher Form (AH_x-Gel) nach der Hydratation im Klimaschrank vorliegt. Eine wahrscheinliche Ursache für die frühe Bildung von Gibbsit in den Modellfeuerbetonen ist der hohe Anteil von feinkörnigem Al₂O₃, der ursächlich für eine höhere Konzentration von Al³⁺ lonen im Porenwasser ist, was wiederum die Keimbildung und Kristallisation von AH₃ fördert, bzw. selbst als Kristallkeim dienen kann. Gegebenenfalls wird hierdurch die Bildung von Gibbsit zulasten des C₂AH₈ bevorzugt, sodass für die Bildung von C₂AH₈ die Lösung untersättigt bleibt, da die Konzentration von Al³⁺ in der Lösung zu gering bleibt.

Werden die Feuerbetone auf 130 °C erwärmt, erfolgt, unabhängig vom Verflüssigersystem, eine signifikante Nachhydratation. In dem MCC-A liegt der Hydratationsgrad dann bei etwa 50 %, wobei hauptsächlich Gibbsit und Katoit neben Spuren von CAH₁₀ und Böhmit gebildet werden. In dem MCC-P+Z, welcher bereits bei 20 °C einen höheren Hydratationsgrad als MCC-A aufweist, steigt der Hydratationsgrad auf über 50 %, bleibt damit aber hinter der Nachhydratationsrate des Acrylat-verflüssigten Systems zurück. Katoit und Gibbsit sind die dominanten Hydratphasen. Ferner liegen CAH₁₀ und Böhmit in Spuren vor. Der MCC-PC zeigt bereits bei 20 °C den höchsten Hydratationsgrad und weist auch nach einer Vorbehandlung von 130 °C den höchsten Hydratationsgrad von etwa 60 % auf. Die Hydratationsrate ist hier aber geringer als in den Systemen mit Acrylat oder Phosphat + Zitronensäure. Es dominiert der Gibbsit neben Katoit. Ferner wurden Spuren von Böhmit nachgewiesen.

Die Hydratation ist bei einer Vorbehandlungstemperatur zwischen 130 und 250 °C abgeschlossen, unabhängig vom Verflüssigersystem. Dies könnte darauf beruhen, dass das für die weitere Hydratation erforderliche Porenwasser verdunstete, wobei hier jede MCC-Varietät nochmals ein unterschiedliches Verhalten zeigt. So wird das Austrocknen der Proben maßgeblich von der Wegsamkeit im Porengefüge und der offenen Porosität der MCC geprägt, sodass im Falle der dichteren Varietäten MCC-P+Z und MCC-PC (siehe Kapitel 5.8.4 bis 5.8.6), selbst noch bis rund 250 °C ein Zuwachs an Hydratphasen erkennbar ist. Die zuletzt genannten Varietäten enthalten auch signifikant mehr Böhmit, was wiederum ein Hinweis für die schlechte Wegsamkeit für das Porenwasser sein dürfte, da Böhmit hydrothermale Bildungsbedingungen benötigt und nur dann in Erscheinung tritt, wenn ein signifikanter Porendruck vorliegt.

Generell nimmt bei höheren Vorbehandlungstemperaturen der Anteil an den Zementklinkerphasen CA und CA₂ wieder zu, was auf die angewendete Normierungsmethode zurückzuführen ist. Zudem räumt der Stand des Wissens sehr klar in der frühen Dehydratation dem Mayenit als Neubildung eine wichtige Rolle ein. Mayenit wurde aber in keinem Feuerbeton dieser Versuchsreihe nachgewiesen, da dieser vermutlich erst bei höheren Temperaturen gebildet wird.

Um den Einfluss der Porosität und damit auch der Permeabilität auf die Hydratphasenentwicklung unabhängig vom eingesetzten Verflüssiger zu untersuchen, wurde die Porosität über den Zusatz von Fasern erhöht. Die verwendeten Polypropylenfasern schmelzen während des Aufheizens bei etwa 160 °C und brennen schließlich aus. Dadurch wird gezielt eine zusätzliche Porosität erzeugt, welche das Verdampfen von Porenwasser begünstigt und gemäß der zuvor formulierten Schlussfolgerung die Nachhydratation im Rahmen der geschilderten Vorgehensweise weiter hemmen sollte.

Nach der Auslagerung im Klimaschrank bei 20 °C ist kein Einfluss der zugegebenen Fasern auf die Anteile der gebildeten Mineralphasen der MC-Modellfeuerbetone feststellbar. Für alle Versatzvariationen ist der Hydratationsgrad spezifisch für jeden Verflüssiger aber bei gleichem Verflüssiger, mit und ohne Fasern, vergleichbar. Geringfügige Unterschiede des Hydratationsgrades nach 20 °C liegen im Bereich des Messfehlers. Im Temperaturbereich bis 380 °C scheinen die Fasern wenig zum Entwässerungsverhalten beizutragen. Vergleicht man in Bild 73 die faserfreien Versätze mit den faserhaltigen, so wird innerhalb eines Verflüssigersystems kein signifikanter Unterschied in den vorliegenden Phasenanteilen über alle Temperaturstufen erkennbar. Generell bestimmt der initiale Hydratationsgrad nach dem Abbinden den Hydratationsgrad der einzelnen Temperaturstufen. Generell kann abgeleitet werden: Je höher der initiale Hydratationsgrad, desto mehr Hydratphasen bilden sich, wobei in den dichteren Feuerbetonen MCC-PC und MCC-P+Z ein Fortschreiten der Hydratation bis etwa 250 °C festgestellt wurde, während im Falle des MCC-A bereits bei 130 °C der maximale Hydratationsgrad erreicht ist. Über alle untersuchten MCC hinweg ist die nachgewiesene Ausbildung der Mineralphasen wenig überraschend. So ist bereits nach einer Vorbehandlung bei 130 °C die metastabile Phase CAH₁₀ nicht mehr vorhanden und anstelle dessen Katoit.

Die Bildung von Böhmit ab etwa 180 °C in den mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten Feuerbetonen beruht auf der niedrigen offenen Porosität (siehe Kapitel 5.8.4), wodurch das Verdampfen des Porenwassers behindert wird und über 100 °C für hydrothermale Bedingungen in den Poren sorgt, was wiederum die Bildung von Böhmit begünstigt. Dabei wird Böhmit zulasten des Gibbsits gebildet, indem Letzterer Wasser abgibt /AUV13, WÖH07; PAL16, ALM03/. Generell ist hier zu beobachten, dass die Zugabe von Fasern, die ab etwa 160 °C schmelzen und zusätzliche Poren hinterlassen, die Bildung von Böhmit hemmt, da die gerichtete Porosität dem Einstellen eines hydrothermalen Milieus entgegenwirkt.

Um diese eher ungewöhnliche thermisch bedingte Mineralphasenentwicklung fachlich besser einordnen zu können, muss nochmals auf die Probenpräparation eingegangen werden. Alle hier diskutierten Temperaturen (jeweils die Vorbehandlungstemperatur, bei deren Erreichen der Brand abgebrochen wurde), beruhen auf den Ergebnissen der MMH-Messungen, die mit einer Aufheizrate von 250 K/h bis auf 650 °C aufgeheizt wurden. Die Abbruchtemperaturen wurden gewählt in Abhängigkeit vom Auftreten von Signalen in den MMH-Kurven, die auf Phasenumwandlungen im Zuge der Entwässerung der Feuerbetone beruhen. Demzufolge muss hier die Reaktionskinetik der Hydratphasenbildung berücksichtigt werden. Ein deutlich geringerer Hydratationsgrad bei Temperaturen ab 250 °C darf nicht mit einer voranschreitenden Zersetzung der bereits bestehenden Hydratphasen gleichgesetzt werden. Es ist anzunehmen, dass diese Beobachtung auf einer deutlich geringeren Bildung der Zementhydratphasen beruht, da deren Stabilitätsfeld thermisch zu schnell durchlaufen wurde. Darüber hinaus muss beachtet werden, dass die Versuche nicht in einem geschlossenen System durchgeführt wurden, insbesondere Porenwasser verdampft, wodurch die Hydratphasenbildung zum Erliegen kommt. Dafür spricht auch, dass für alle Feuerbetone der Hydratationsgrad nach der höchsten Auslagerungstemperatur derjenigen nach dem Abbinden bei 20 °C entspricht. Die Ergebnisse der MMH und TG-Untersuchungen bestätigen, dass die Feuerbetone bei 180 °C in der Regel noch Porenwasser enthalten, das dann im Temperaturintervall bis 250 °C entweicht. Dies wird angezeigt durch das als Siedeende interpretierte MMH-Signal S4 und der damit korrelierenden Gewichtsänderung (TG), die sich ab dem Temperaturbereich des MMH-Signals verlangsamt.

5.8.2. Beschreibung der morphologischen Gestalt der Hydratphasen-Kristalle mit hochauflösender Rasterelektronenmikroskopie

Anhand von Sekundärelektronenbildern wurde die morphologische Veränderung der Hydratphasen in Feuerbetonen untersucht, die mit 250 K/h bis zu den in Tabelle 12 angegebenen Maximaltemperaturen vorbehandelt wurden. Beim RC wurde zusätzlich das Mikrogefüge nach Erhitzen auf bis zu 650 °C betrachtet.

Neben den bereits in Kapitel 5.2.3 beschriebenen CAH-Phasen CAH₁₀, C₂AH₈, C₃AH₆ (Katoit) sowie AH₃ (Gibbsit) wird mit steigender Temperatur unter hydrothermalen Bedingungen auch die Bildung

von AH (Böhmit) erwartet. Böhmit kristallisiert im orthorhombischen Kristallsystem und bildet in idiomorpher Form dicktafelige bis kurzprismatische Kristalle.

Aufnahmen des RC nach einer Vorbehandlung von 150 °C zeigen dünntafelige und auch kurzprismatische Kristallformen, insbesondere an der Oberfläche von Poren (Bild 74). Nach Erhitzen auf 180 °C haben sich auch in den Poren überwiegend dünntafelige Kristalle gebildet (Bild 75), die sich bei weiterer Temperatureinwirkung vergröbern (Bild 76 und Bild 77). Bei der höchsten untersuchten Temperaturstufe (650 °C) weisen die Prismenflächen Anzeichen einer Zersetzung auf, was durch die unregelmäßigen Umrisse der Tafeln augenscheinlich wird.

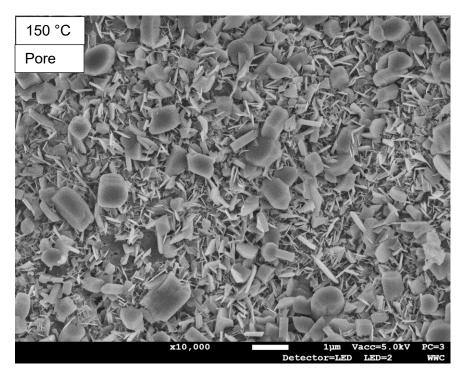


Bild 74: RC nach 48 Stunden Hydratation und anschließendem Erhitzen auf **150 °C**. Die Aufnahme einer Pore zeigt idiomorphe, bis zu 1 µm große kurzprismatische sowie dünntafelige Kristalle.

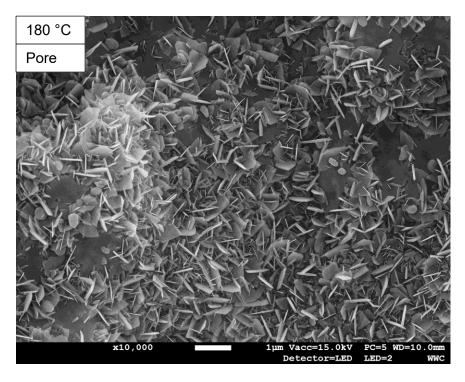


Bild 75: RC nach 48 Stunden Hydratation und anschließendem Erhitzen auf **180 °C**. Die Aufnahme einer Pore zeigt überwiegend dünntafelige Kristalle.

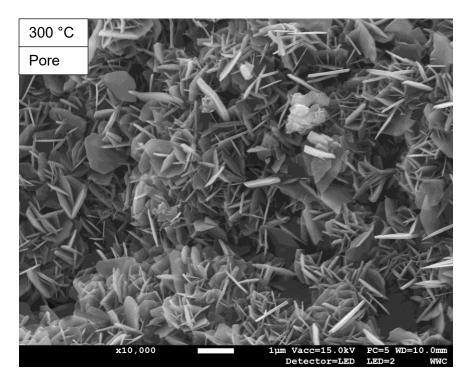


Bild 76: RC nach dem Abbinden und anschließendem Erhitzen auf **300** °C. Die Aufnahme einer Pore zeigt überwiegend dünntafelige Kristalle, die im Vergleich zur Temperaturstufe 180 °C größer erscheinen.

Bild 77: RC nach 48 Stunden Hydratation und anschließendem Erhitzen auf **650** °C. Die Aufnahme von den in einer **Pore** gebildeten Kristallen zeigt überwiegend tafelige Ausbildungsformen. Bei stärkerer Vergrößerung (30.000-fach) sind im unteren Bilddrittel tafelige Kristalle mit unregelmäßigen Kanten zu erkennen.

Während des ersten Aufheizens entwickeln sich Größe und Habitus der Hydratphasen-Kristalle, je nach verwendetem Verflüssiger und dessen Auswirkungen auf die Mikrostruktur und anfänglichen Mineralphasenbestand, wie nachfolgend geschildert, unterschiedlich. Werden die Modellversätze bei 130 °C vorbehandelt, ist für alle Versatzvariationen im Vergleich zur Matrixstruktur nach der Hydratation im Klimaschrank (siehe Kapitel 5.2.3) eine deutliche Rekristallisation der Hydratphasen-Kristalle erkennbar, wobei sie größer geworden sind. In diesem Temperaturintervall ist Porenwasser noch substanziell im Gefüge erhalten, was eine starke Nachhydratation zur Folge hat. Dies ist im Einklang mit den Ergebnissen der Phasenanalyse (RBA, siehe Kapitel 5.8.1, wo auch der Effekt der thermisch bedingten Nachhydratation quantifiziert wurde). Grundsätzlich wird im Mikrogefüge erkennbar, dass mit Acrylat verflüssigte Feuerbetone signifikant weniger Hydratphasen bilden als die mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten Systeme. In Kapitel 5.8.1 wurde bereits dargestellt, dass dieses unterschiedliche Hydratationsvermögen auf der deutlich höheren offenen Porosität des mit Acrylat verflüssigten Feuerbetons beruht, was wiederum ein rascheres Austrocknen der Proben zur Folge hat, wodurch die Hydratation unterbrochen wird, bevor eine signifikante Nachhydratation stattfinden kann. Es besteht auch die Möglichkeit, dass die hydratationshemmende Wirkung des Acrylats auch bei Temperaturen im Bereich der Nachhydratation noch immer anhält.

So weisen die mit Acrylat verflüssigten untersuchten Feuerbetone nach einer thermischen Behand-

lung bis 130 °C nicht mehr wenige langprismatische Hydratphasen auf, wie nach 20 °C typisch, sondern weisen in ebenso geringer Konzentration tafelförmige Hydratphasen und kurzprismatische Gibbsitkristalle auf, welche die rechte Seite des Ausschnittes im Bild 78 dominieren. Dies deutet darauf hin, dass noch genügend Porenwasser vorgelegen haben muss, welches den Stofftransport für das Wachstum von Hydratphasen-Kristallen ermöglichte. Weitere Hydratphasen sind wesentlich feinkristalliner ausgebildet, so dass die Mineralphasen nicht zugeordnet werden können. Diese Feinkörnigkeit lässt auch vermuten, dass während der Erwärmung der Probe zu wenig Wasser zur Verfügung stand, um eine substanzielle Nachhydratation zu ermöglichen. Dies wird umso deutlicher, wenn die Mikrogefüge der mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten Feuerbetone zum Vergleich herangezogen werden. Nach einer thermischen Vorbehandlung bei 130 °C zeigen beide eine erhebliche Kornvergröberung der Hydratphasen. In beiden Feuerbetonen dominiert rasenbildend, kurzprismatisch idiomorpher Gibbsit das Gefüge (Bild 79 und Bild 80). Dieser wird begleitet von deutlich feinkristallineren und wenig konturierten Aggregaten bestehend aus augenscheinlich tafeligen Kristallen. Im Vergleich sind die Gibbsitkristalle in dem MCC-PC geringfügig kleiner ausgebildet.

Abgeleitet aus den Ergebnissen der Röntgenphasenanalyse (siehe Kapitel 5.8.1) weisen alle Versatzvariationen, nach einer Vorbehandlung von 130 °C, einen ähnlichen Bestand an Hydratphasen auf, bezogen auf das Verhältnis von Katoit zu Gibbsit und die Gesamtgehalte. Dennoch fällt es in allen REM-Abbildungen schwer, Gibbsit zweifelsfrei neben Katoit nachzuweisen, was sich vor allem darin begründet, dass die sehr feinkörnigen Kristallaggregate nicht eindeutig zuzuordnen sind. Es darf aber vermutet werden, dass es sich hierbei um Katoit handelt.

Werden die Feuerbetone einer Vorbehandlung bis 250 °C (ohne Haltezeit) unterzogen, wird insbesondere für den MCC-PC und den MCC-P+Z veränderte Hydratphasenparagenese deutlich. Die zuvor beschriebenen prismatischen Gibbsitkristalle verlieren ihre scharfen Konturen, was darauf hindeutet, dass Gibbsit bei diesen Temperaturen nicht mehr stabil ist. Zudem bildeten sich tafelförmige Kristalle, die sehr wahrscheinlich als Böhmit anzusprechen sind. Während im Falle des MCC-P+Z neben den tafeligen auch noch prismatische Kristalle hinzukommen, ist im Falle des MCC-PC kein Gibbsit mehr erkennbar, die prismatischen Kristalle scheinen bereits vollständig durch tafelförmige Kristalle ersetzt.

Es ist wenig überraschend, dass die sich einstellende Hydratphasenparagenese temperaturabhängig ist und dies kann bereits aus den Ergebnissen der Röntgenphasenanalyse abgeleitet werden (siehe Kapitel 5.8.1). Allerdings muss man die Entstehungsgeschichte der Hydratphasen mit einiger Vorsicht betrachten, wobei zu berücksichtigen ist, wie die Proben behandelt wurden. Es ist zwar grundsätzlich richtig und nachvollziehbar, dass Gibbsit unter hydrothermalen Bedingungen Wasser abgibt und Böhmit entsteht, jedoch ist im vorliegenden Falle eher davon auszugehen, dass sich der Böhmit anstelle

des Gibbsit bildete. Hierfür spricht die hohe Aufheizrate von 250 K/h, mit der die Proben bis zur benannten Maximaltemperatur erwärmt wurden. Es ist eher unwahrscheinlich, dass im Zuge der Aufheizung der Gibbsit zunächst entsteht und darauf in den Böhmit umwandelt. Wäre dies der Fall, läge aller Wahrscheinlichkeit nach der Böhmit pseudomorph nach Gibbsit vor. Die Mikrogefüge weisen aber idiomorphe, tafelförmige Böhmit Kristalle auf, sodass eine Zersetzungsreaktion hier unwahrscheinlich ist. Die sich, durch die geringe Porosität der Feuerbetone MCC-P+Z und MCC-PC, einstellenden hydrothermalen Bedingungen im Mikrogefüge stabilisieren somit den Böhmit auf Kosten des Gibbsits.

Typisch für alle untersuchten MC-Feuerbetone ist ein Kristallwachstum mit steigender Temperatur, wie in Bild 83 a) und b) am Beispiel des MCC-PC gezeigt werden kann. Bei 250 °C hat nicht nur die Anzahl der tafelförmigen Kristalle zugenommen, die den gesamten Bildausschnitt dominieren, sondern auch ihre Größe im Vergleich zu einer Vorbehandlungstemperatur von 180 °C.

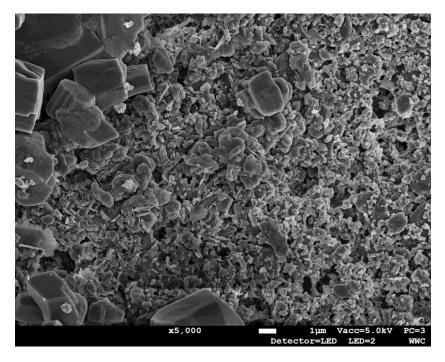


Bild 78: MCC-A nach 48 Stunden Hydratation und Erhitzen auf **130 °C**. Die feinkörnige Matrix ist durchsetzt mit tafeligen Kristallen. Am linken Bildrand sind große kurzprismatische Kristalle zu erkennen.

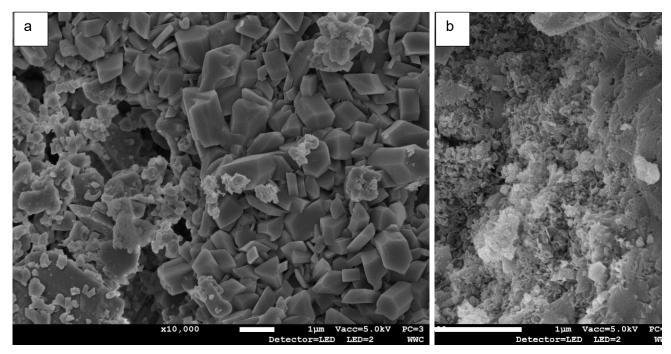


Bild 79: MCC-P+Z nach 48 Stunden Hydratation und Erhitzen auf **130** °C. a) große, dicht gepackte prismatische Kristalle, b) kleine, miteinander verwachsene xenomorphe Kristalle.

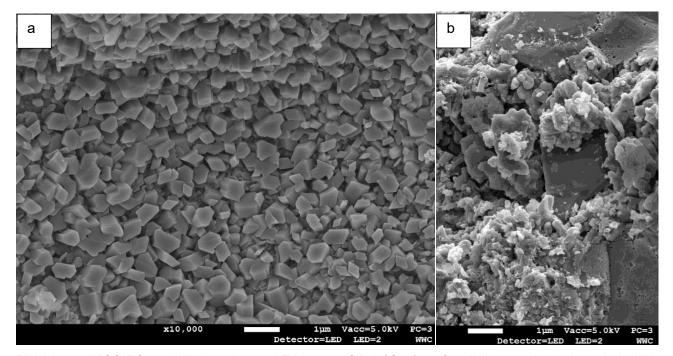


Bild 80: MCC-PC nach Hydratation und Erhitzen auf **130 °C.** a) große, dicht gepackte, prismatische Kristalle (Gibbsit), b) kleine, miteinander verwachsene, xenomorphe Kristalle. Ausbruch eines Grobkorns mit dahinter liegenden Kristallen mit tafelförmigem Habitus, vermutlich Katoit pseudomorph nach CAH₁₀ oder C₂AH₈.

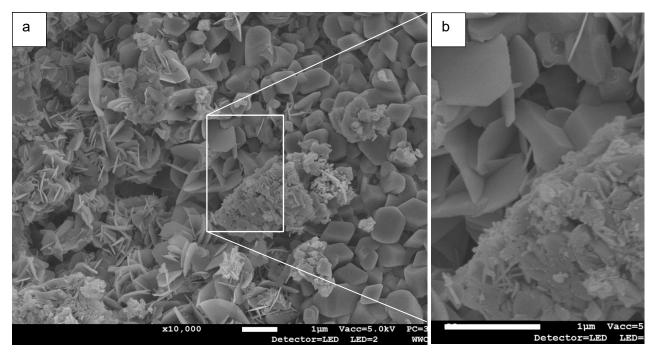


Bild 81: MCC-P+Z nach 48 Stunden Hydratation und Erhitzen auf 250 °C. a) Kurzprismatische Kristalle (Gibbsit). b) Tafelförmige Kristalle mit korrodierter Oberfläche (vermutlich Böhmit).

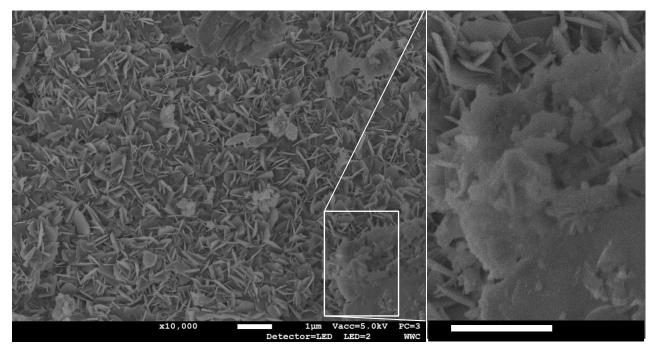


Bild 82: MCC-PC nach 48 Stunden Hydratation und Erhitzen auf 250 °C Tafelförmige Kristalle (vermutlich Böhmit). Gibbsit ist nicht nachweisbar.

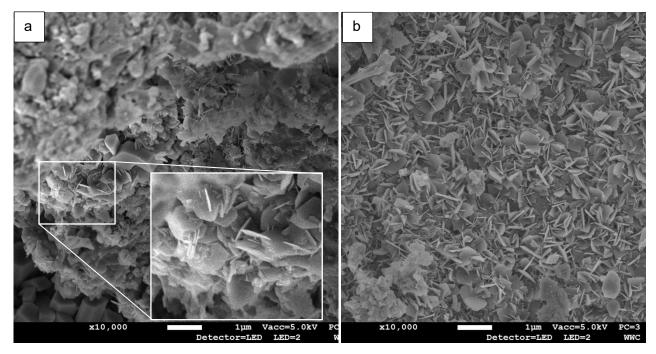


Bild 83: MCC-PC nach dem Abbinden und anschließendem Erhitzen auf 180 °C (a) bzw. 250 °C (b) Während des Erhitzens nimmt die Menge und Größe der gebildeten tafeligen Kristalle zu. Nach einer Vorbehandlung bei 250 °C fehlt der Gibbsit. Von 180 °C auf 250 °C erhöht sich signifikant Anteil und Größe der tafelförmigen Kristalle, bei denen es sich vermutlich um Böhmit handelt.

5.8.3. Untersuchung der Kaltbiegezugfestigkeit (KBF) durch 3-Punkt-Biegeversuch

Die Biegezugfestigkeit wurde nach DIN EN 993-6 an Feuerbetonen mit variiertem Zementanteil und verschiedenen zugegebenen Verflüssigern sowohl mit als auch ohne zugesetzte Fasern ermittelt. Die Messungen erfolgten bei Raumtemperatur. Die Prüfkörper (Prismen im Format 40 x 40 x 160 mm) wurden nach dem Gießen zur Hydratation für 48 Stunden bei 20 °C und 95 % rel. Luftfeuchtigkeit im Klimaschrank gelagert, dann auf zuvor festgelegte Temperaturen (Tabelle 12) erhitzt und anschließend 4 Tage vakuumgetrocknet. Zusätzlich wurde an allen untersuchten MCC-Feuerbetonen die Biegezugfestigkeit nach Ende der 48stündigen Hydratationsphase und Gefriertrocknung ohne anschließende Erhitzung bestimmt, um den Ausgangswert für die durch Erhitzung auftretenden Veränderungen der KBF zu ermitteln. Diese Ausgangswerte nach dem Abbinden unterscheiden sich deutlich, wie Bild 65 veranschaulicht (MCC-A: 7,8 MPa, MCC-P+Z: 14,2 MPa, MCC-PC: 18,6 MPa). Bei den Feuerbetonen mit Faserzusatz wurde nach dem Abbinden für MCC-P+Z F und MCC-PC F eine niedrigere, für MCC-A F dagegen eine höhere KBF gemessen als in den faserfreien Feuerbetonen (MCC-A F: 10,8 MPa; MCC-P+Z F: 12,5MPa, MCC-PC F: 15,7 MP).

Durch die Zugabe von Verflüssigern ist es möglich, ähnliche KBF-Werte bei niedrigerem Zement- und Wassergehalt zu erreichen. Für den RC-Referenzversatz ohne Verflüssiger und mit 20 % Zement wurde die höchste Biegezugfestigkeit nach der Temperaturstufe 185 °C gemessen. Bei weiterem Erhitzen verringert sich der Wert von 15,6 MPa auf 12,7 MPa. Bei halben Zementgehalt (10 %) übersteigt die Biegefestigkeit des MCC-PC bei der niedrigsten untersuchen Vorbehandlungstemperatur

130 °C mit ca. 20,7 MPa deutlich den für 150 °C gemessenen Wert des Referenzversatzes (14,1 MPa), auch die KBF des MCC-P+Z liegt mit ca. 16,4 MPa über dem Vergleichswert. Nur der MCC-A zeigt mit ca.12,2 MPa eine etwas geringere KBF (Bild 65). Mit abnehmendem Zementgehalt reduziert sich auch die Biegezugfestigkeit und liegt bei der Vorbehandlungstemperatur 130 °C für LCC mit 5 % Zement zwischen 9,4und 11,3 MPa (Bild 66),

Auch die Entwicklung der Biegezugfestigkeit der Modellfeuerbetone bei steigender Temperatur wird stark durch die Auswahl des zur Verflüssigung eingesetzten Additivs beeinflusst, wie Bild 65 bis Bild 67 veranschaulichen. Dabei sind Unterschiede zwischen den Verflüssigersystemen umso ausgeprägter, je höher der Zementanteil des Feuerbetons ist.

Beim RC wird im Temperaturintervall 150 °C bis 185 °C eine Erhöhung der KBF auf den Maximalwert 15,6 MPa beobachtet, bei höherer Vorbehandlungstemperatur verringert sich die KBF wieder auf 12,7 MPa bei 300 °C Vorbehandlungstemperatur (Bild 64). Alle MCC zeigen bereits im Temperaturintervall 130 °C bis 180 °C eine Verringerung der KBF, die sich beim MCC-A zu höheren Temperaturen fortsetzt. Dagegen nimmt die KBF von MCC-P+Z und MCC-PC oberhalb von 180 °C Vorbehandlungstemperatur zu und übersteigt mit bis zu 29,1 MPa (PCC-PC bei 355 °C) bzw.23,1 MPa (MCC-P+Z bei 300 °C) deutlich den für den Referenzversatz gemessenen Maximalwert. Bei MCC-P+Z ist nach Vorbehandlung bei 380 °C eine verringerte KBF zu erkennen

Bei den LCC sind Veränderungen der KBF mit steigender Vorbehandlungstemperatur weniger stark ausgeprägt, wie Bild 66 zeigt. Ausgehend von annähernd gleicher KBF bei 130 ° (LCC-A: 9,4 MPa, LCC-P+Z:11,3 MPa, LCC-PC: 10,1 MPa) nimmt die KBF bis zur höchsten Vorbehandlungstemperatur für LCC-A stetig ab auf 6,2 MPa nach 360 °C. Für LCC-P+Z und in geringerem Maß auch LCC-PC nimmt die KBF bis 300 ° dagegen zu und bleibt dann annähernd gleich (LCC-P+Z 17,3 bei 370 °C, LCC-PC 13,8 bei 380 °C). Dabei sind die Unterschiede in der KBF-Entwicklung zwischen den mit verschiedenen Verflüssigern versetzten Feuerbetonen umso größer, je mehr Zement im Feuerbeton enthalten ist, dessen Hydratisierung durch die gewählten Verflüssiger beeinflusst werden kann. Die untersuchten ULC-Feuerbetone enthalten nur 2 % Zement, dies führt zu einer geringen Biegezugfestigkeit (< 10 MPa), wodurch die faserfreien ULC-Feuerbetone nicht schadensfrei aufgeheizt werden konnten, was die hohe Explosionsneigung der faserfreien ULCC erklärt. Die Untersuchung der ULC-Feuerbetone beschränkte sich daher auf Feuerbetone mit Fasern.

Bei Zugabe von Fasern wird bei den MCC eine Angleichung der Biegefestigkeit nach der Auslagerung im Klimaschrank beobachtet und die Festigkeitszunahmen bei 150 °C ist geringer als in den faserfreien Feuerbetonen. Oberhalb des Schmelzpunktes der Fasern ist für die mit PC oder P+Z-verflüssigten MCC kein Festigkeitsverlust bei 180 °C zu erkennen, die KBF des MCC-P+Z mit Fasern bleibt auch bei höheren Temperaturen auf dem gleichen Niveau wie vor der Temperaturbehandlung. Der Effekt der eingebrachten Fasern auf die Entwicklung der KBF von LCC-Feuerbetonen wird überlagert

von dem Effekt der unterschiedlichen Porosität, die wiederum in unterschiedlich hohen Wasserzugaben begründet ist (siehe Kapitel 5.8.3, Bild 70). So enthält der LCC-PC mit Fasern 0,2 % weniger Wasser, in der Folge eine niedrigere Porosität und zeigt ab 250 °C eine höhere Biegezugfestigkeit als der faserfreie Versatz, während der LCC-P+Z mit Fasern 0,4 % mehr Wasser enthält, eine höhere Porosität besitzt und ab 250 °C eine geringere KBF zeigt als der faserfreie Feuerbeton. Wie schon bei den MCC beobachtet, verändert sich die Biegezugfestigkeit des LCC-P+Z mit steigender Temperatur nur noch wenig, wenn Fasern in den Feuerbeton eingebracht werden. Bei den ULCC mit Fasern fällt auf, dass nicht nur beim ULCC-A F, sondern auch bei ULCC-PC F und ULCC-P+Z F die Biegezugfestigkeit bei steigenden Vorbehandlungstemperatur abzunehmen scheint. Dabei ist aber zu berücksichtigen, dass die Abweichungen zwischen den Messwerten der verschiedenen Vorbehandlungstemperaturen für die jeweiligen Verflüssiger mit < 1,5 MPa innerhalb der zu erwartenden Messschwankungen der Analysemethode liegen.

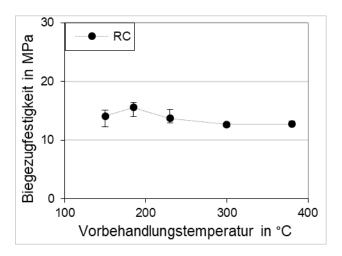
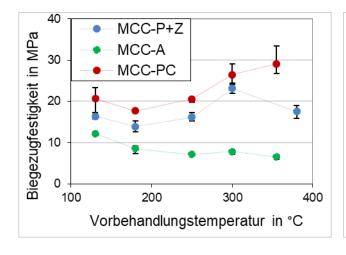



Bild 84: Biegezugfestigkeit des Referenzfeuerbetons RC nach Temperaturbehandlung.

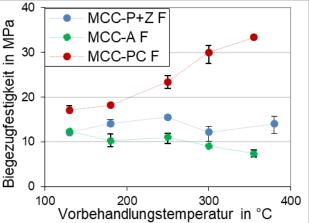
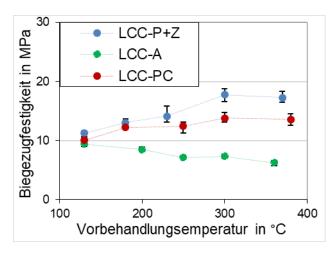



Bild 85: Biegezugfestigkeit der mit verschiedenen Verflüssigern versetzten MCC nach dem Abbinden und nach anschließender Temperaturbehandlung. Links: ohne Faserzusatz, rechts: mit Faserzusatz.

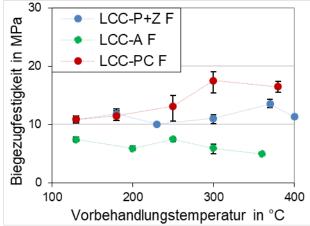


Bild 86: Biegezugfestigkeit der mit verschiedenen Verflüssigern versetzten LCC nach Temperaturbehandlung. Links: ohne Faserzusatz, rechts: mit Faserzusatz.

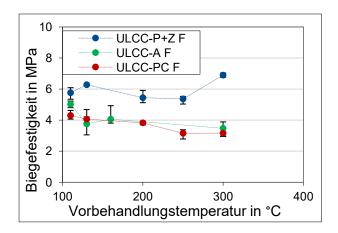


Bild 87: Biegezugfestigkeit der mit verschiedenen Verflüssigern versetzten faserhaltigen ULCC nach Temperaturbehandlung.

5.8.4. Untersuchung der offenen Porosität durch Auftriebswägung

Die Bestimmung der offenen Porosität erfolgte im Verfahren der Wasserauftriebswägung gemäß DIN EN 993-1 nach Ende der 48stündigen Hydratationsphase sowie nach Vorbehandlung durch Erhitzen auf zuvor festgelegte Temperaturen (siehe Tabelle 12). Als Prüfkörper wurden die im Rahmen der Biegezugfestigkeitsprüfung (siehe Kapitel 5.8.3) gebrochenen Prismen verwendet. Die Feststoffanteile der hier untersuchten Materialien bestehen zu 80 bis 95 % aus Tabulartonerde in unterschiedlichen Korngrößenfraktionen Die verwendeten Tabulartonerde selbst zeigt nur eine sehr geringe offener Porosität von ca. 2 %. Die von Poren durchsetzte Matrix wird von den Feinkornfraktionen zusammen mit Hydratphasen und unvollständig hydratisiertem Zementklinker gebildet. In diese Matrix eingebettet ist Grobkorn mit bis zu 6 mm Durchmesser.

Für den Referenzversatz RC ohne Verflüssiger und mit 20 % Zementanteil (Bild 88) wurde eine zunehmende offene Porosität bis zur 180 °C-Erhitzungsstufe gemessen. Bei weiterem Erhitzen verringert sich die gemessene Porosität wieder.

Ausgehend von einer sehr unterschiedlichen Anfangsporosität nach 48 Stunden Hydratation zeigen alle untersuchten MCC (Bild 89) bis zur Temperaturstufe 250 °C eine allmählich zunehmende offene Porosität. Ähnlich dem Verlauf beim Referenzversatz (RC) reduziert sich die gemessene offene Porosität des MCC-P+Z bei weiterem Erhitzen auf 300 °C deutlich (von 16,1 % auf 9,0 %) und steigt dann in der letzten Temperaturstufe wieder an. Bei Verwendung von Acrylat oder Polycarboxylatether nimmt oberhalb 250 °C die offene Porosität ebenfalls leicht ab, was sich bis zur höchsten untersuchten Temperatur (380 °C) fortsetzt. Die Zugabe von Fasern führt bei MCC-PC F zu einer stärkeren Zunahme der offenen Porosität im Temperaturschritt 180 °C - 250 °C. Bei MCC-P+Z F und MCC-A F setzt sich die anfängliche Porositätszunahme auch über 250 °C hinaus fort.

Der verringerte Zementanteil führt bei den LCC (Bild 90) im Vergleich zu den MCC zu geringeren Veränderungen der Porosität beim Erhitzen der Prüfkörper. Wie schon bei den MCC beobachtet, wurde auch bei LCC-P+Z und LCC-PC eine Abnahme der offenen Porosität bei 300 °C festgestellt, bei LCC-A nimmt die Porosität bis 300 °C weiter zu. Bei Zugabe von Fasern erstreckt sich die Porositätszunahme auch hier bis zu höheren Temperaturen.

Bei den faserhaltigen ULCC (Bild 91) mit sehr geringem Zementgehalt von 2 % wurden nur geringe Veränderungen der Porosität beim Erhitzen bis 300 °C festgestellt. Nur bei ULCC-PC F lässt sich mit einer Porositätszunahme von 16,7 % auf 18,9 % zwischen 200 °C und 300 °C eine Tendenz für diesen Temperaturbereich ableiten.

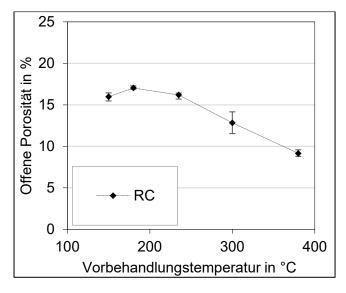


Bild 88: Offene Porosität des Referenzbetons RC nach 48 h Hydratation bei 20 °C / 95 % r. F. und anschließender Temperaturbehandlung.

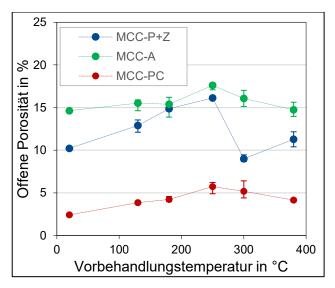
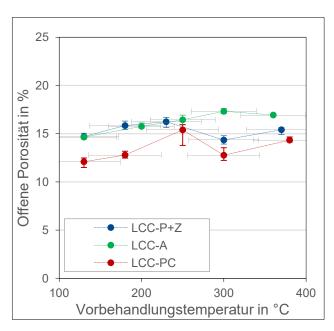



Bild 89: Offene Porosität der mit verschiedenen Verflüssigern versetzten MCC nach Abbinden und nach anschließender Temperaturbehandlung. Links: ohne Fasern, rechts: mit Fasern.

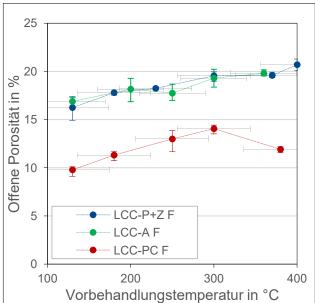


Bild 90: Offene Porosität der mit verschiedenen Verflüssigern versetzten LCC nach Abbinden und anschließender Temperaturbehandlung. Links: ohne Fasern, rechts: mit Fasern.

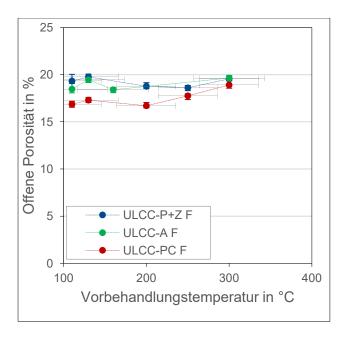


Bild 91: Offene Porosität der mit verschiedenen Verflüssigern versetzten faserhaltigen ULCC nach 48 h Hydratation bei 20 °C / 95 % r. F. und anschließender Temperaturbehandlung.

5.8.5. Untersuchung der Porengrößenverteilung (PGV) mit Quecksilberdruckporosimetrie

Die Bestimmung der Größenverteilung der Mikroporen erfolgte an den Modellfeuerbetonen entsprechend Tabelle 9 und

Tabelle 10 in Anlehnung an DIN 66133 (Quecksilberdruckporosimetrie), jedoch mit erweitertem Porengrößenbereich. In Bild 92 ist die Veränderung der Porengrößenverteilung im Referenzversatz (RC) während des ersten Aufheizens erkennbar. Nach der 48 Stunden dauernden Hydratation bei 20 °C / 95 % rel. Luftfeuchtigkeit zeigen die Proben eine breite Verteilung der Porengrößen über den Messbereich von 0,004 μm bis 4 μm. Nach Vorbehandlung bei 150 °C überwiegen Poren mit einem Durchmesser von 0,5 μm bis 1 μm, der Anteil kleinerer Poren ist deutlich vermindert. Bei weiterer Erhöhung der Behandlungstemperatur sind wieder zunehmend kleinere Poren feststellbar. Von 180 °C bis 480 °C nimmt zunächst der Anteil von Poren mittlerer Größe (\varnothing = 0,05 μm bis 0,5 μm) zu. Ab 560 °C steigt auch der Anteil sehr kleiner Poren (\varnothing < 0,02 μm) wieder an.

Die Porengrößenverteilungen (PGV) der verflüssigten Feuerbetone mit 10 Ma.-% Zementanteil (MCC) unterscheiden sich in Abhängigkeit vom eingesetzten Verflüssiger deutlich (Bild 93). Bei den LCC sedimentierte bei Verflüssigung mit Polycarboxylatether das Grobkorn, daher wurde für den MCC-PC die Wasserzugabe reduziert. Der mit Natriumpolyphosphat verflüssigte **MCC-P+Z** (Bild 94, linke Spalte) zeigt nach 48stündigem Abbinden bei 20 °C / 95 % Luftfeuchtigkeit eine breite PGV im Bereich 0,02 bis 1 μm. Nach Vorbehandlung bei niedriger Temperaturvor ist der Anteil der Poren mit einem mittleren Durchmesser (ca. 0,1 μm) verringert, so dass bei 130 °C ein bimodales Verteilungsmuster vorliegt. In höher getemperten Proben werden jedoch überwiegend wieder Poren in diesem mittleren Größenbereich detektiert. Ab 180 °C ergibt sich damit eine monomodale Verteilung, deren

Maximum im Bereich 0,1 bis 0,2 μm liegt. Mit weiter zunehmender Vorbehandlungstemperatur erstreckt sich das Maximum allmählich über einen breiteren Porengrößenbereich. Der Acrylat-verflüssigte MCC-A (Bild 94, mittlere Spalte) zeigt bereits vor der Temperaturbehandlung eine monomodale PGV mit einem Maximum bei ca. 0,1 bis 0,4 μm. Beim ersten Aufheizen verschiebt sich das Maximum hin zu größeren Poren mit einem Durchmesser im Bereich 0,4 bis 0,7 μm. Das monomodale Verteilungsmuster bleibt über den gesamten untersuchten Temperaturbereich bestehen. Die PGV des mit Polycarboxylatether verflüssigten MCC-PC (Bild 94, rechte Spalte) zeigt vor dem ersten Erhitzen eine monomodale Verteilung mit einem deutlich ausgeprägten Maximum bei 0,1 μm. Bei einer Vorbehandlungstemperatur von 130 °C hat sich eine breitere Verteilung der Porendurchmesser ausgebildet, mit drei Maxima bei 0,01 μm, 0,04 μm und 0,11 μm. Bei weiterem Erhitzen prägt sich erneut eine monomodale Verteilung aus, es überwiegen Poren im Bereich 0,06 μm bis 0,1 μm. Mit steigender Vorbehandlungstemperatur nimmt der Anteil von Poren mit Durchmessern < 0,1 μm ab.

Die untersuchten LCC enthalten 5 Ma.-% Calziumaluminatzement. Die Wasserzugabe ist bei LCC-P+Z und LCC-A geringer, bei LCC-PC dagegen höher als bei den entsprechenden MCC. Bild 94 zeigt eine Übersicht der Porengrößenverteilungen der LCC nach Temperaturbehandlung. Während die Acrylat-verflüssigten Feuerbetone nur geringe Unterschiede zwischen den PGV von MCC-A und LCC-A (mittlere Spalte) erkennen lassen, weichen die Messergebnisse für LCC P+Z (links) und LCC-PC (rechts) deutlich von denen der entsprechenden MCC ab. In der niedrigsten Temperaturstufe (130 °C) zeigt der LCC-P+Z eine monomodale PGV mit einem stark ausgeprägten Maximum bei 0,4 bis 0,5 μm. Die hier ebenfalls erkennbaren Anteile von Poren mit Durchmessern im Bereich 0,01 bis 0,1 μm nehmen bei weiterem Erhitzen zu. Bei allen untersuchten Temperaturstufen wurde für LCC-PC nach dem Erhitzen eine bimodale Porengrößenverteilung festgestellt. Die Maxima verlagern sich bei höheren Temperaturen nur wenig von 0,04 bis 0,06 μm und 0,3 bis 0,4 μm zu größeren Porendurchmessern. Es werden mehr Poren im Bereich 0,05 bis 0,08 μm detektiert, während der Anteil von Poren mit einem Durchmesser von über 0,2 μm reduziert ist.

Aufgrund der geringen Festigkeit der **ULCC** und der damit einhergehenden Explosionsneigung wurden an diesen keine systematische Temperaturbehandlungen durchgeführt. Bild 95 stellt daher nur die Porengrößenverteilung der ULCC-Feuerbetone nach dem Abbinden dar. Die Porengrößenverteilungen der ULCC nach dem Abbinden zeigen keine deutlichen Unterschiede zu denen der entsprechenden LCC.

Entscheidend für die Explosionsbeständigkeit von Feuerbetonen ist neben ihrer Festigkeit die Wasserdampf-Permeabilität. Größere Poren sind mit größerer Wahrscheinlichkeit miteinander verbunden und erhöhen dadurch die Permeabilität. Um den Vergleich der Auswirkung verschiedener Verflüssiger auf die resultierenden Porengrößen zu erleichtern, wird in Bild 99 die Entwicklung des Porendurchmesser-Medians der faserfreien MCC beim Erhitzen dargestellt. Der Median gibt den Porendurchmesser an, bei dem 50 % des gesamten Porenvolumens in Poren enthalten ist, die größer als der

jeweilige Wert sind. Bei Verwendung von Acrylat (MCC-A) ist der anfängliche Median größer als 0,2 μm und überschreitet nach dem Aufheizen auf 130 °C 0,4 μm. Im Gegensatz dazu liegen die mittleren Porengrößen sowohl für den Polycarboxylatether-haltigen Feuerbeton (MCC-PC) auch für den Feuerbeton mit Natriumpolyphosphat und Zitronensäure (MCC-P+Z) nach der Aushärtung bei etwa 0,1 μm und bleiben auch beim Erhitzen niedrig. Bei MCC-PC sinkt der mittlere Porendurchmesser nach dem Temperschritt bei 250 °C auf weniger als 0,05 μm.

Im Vergleich der Mikroporenverteilung faserhaltiger und faserfreier Modellfeuerbetone ist zu beachten, dass die eingebrachten Fasern bei 6 mm Länge einen Durchmesser von ca. 18 μm haben. Damit liegt der erwartete Durchmesser der durch ihr Ausbrennen erzeugten Porenkanäle außerhalb des dargestellten Messbereichs der PGV (0,004-4 μm). Für den MCC-P+Z F und den MCC-A F sind bei keiner Temperaturstufe deutliche Unterschiede zu den entsprechenden faserfreien MCC erkennbar. Der MCC-PC F zeigt in den Temperaturstufen 300 °C und 355 °C eine deutlich breitere PGV als der MCC-PC, bei dem hier der Porengrößenbereich 0,02-0,2 μm vorherrscht. Dagegen zeigt der LCC-A F im Unterschied zum LCC-A mit steigender Vorbehandlungstemperatur eine Verschiebung des vorherrschenden Porengrößenbereichs von 0,1-1,0 μm (vor der Temperaturbehandlung) zu feineren Poren mit einem vorherrschenden Porengrößenbereich von 0,01-0,1 μm bei 355 °C. Zusätzlich werden nach der Temperaturbehandlung Poren mit Durchmessern am oberen Rand des Messbereichs detektiert. Auch Bei LCC-P+Z F werden nach der Temperaturbehandlung Porengrößen verlagert sich in den beiden höchsten Temperaturstufen ebenfalls zu kleineren Durchmessern. Für die LCC-PC F ist kein Unterschied zu den faserfreien LCC-PC feststellbar.

Die faserhaltigen ULCC zeigen, ebenso wie die faserfreien ULCC, vor der Temperaturbehandlung einen Peak mit einer vorherrschenden Porengröße im Bereich 0,1-1 μm. Bei ULCC-P+Z bleibt dieser Porengrößenbereich bei allen Temperaturstufen dominierend, zusätzlich werden nach der Temperaturbehandlung aber auch feinere Poren detektiert, deren Volumenanteile sich gleichmäßig niedrig über alle Porengrößen < 0,1 μm verteilen. Auch bei ULCC-PC F entstehen während des Temperaturbehandlung feinere Poren, jedoch vorwiegend im mittleren Porengrößenbereich, gleichzeitig wird der Porendurchmesser 0,1-1 μm weniger dominant. Bei den mit Fasern versetzten ULC-Feuerbetonen ist die Explosionsneigung geringer als bei faserfreien ULCC, dennoch traten bei der Temperaturbehandlung des Acrylat-verflüssigten Feuerbetons mehrfach Explosionen auf. Diese Versuchsreihe wurde daher aus Sicherheitsgründen abgebrochen. Die erfolgreich getemperten Proben des ULCC-A F (Temperaturstufen 110 °C und 130 °C) zeigen, wie alle Acrylat-verflüssigten Feuerbeton-Modifikationen der Versuchsreihe, eine vorherrschenden Porengröße im Bereich von 0,1-1 μm.

In den ULCC-Feuerbetonen mit geringem Zementgehalt wird durchgehend ein vorherrschender Porengrößenbereich von 0,1 bis 1,0 µm detektiert. Aufgrund des niedrigen Zementgehalts ist hier der

Einfluss der gebildeten Hydratphasen auf die PGV gering und die Mikroporosität wird im Wesentlichen durch die Packungsdichte des Versatzes bestimmt. Abweichungen von dieser Ausgangsverteilung werden auf die Entwicklung von Hydratphasen zurückgeführt.

Unter den mit Acrylat verflüssigten Modellfeuerbetonen weicht, bei gleicher Ausgangsverteilung, nur die Entwicklung des LCC-A F nach Erhitzen eindeutig von dieser PGV ab. Dies ist ein Hinweis darauf, dass nur in geringem Umfang Hydratphasen gebildet werden. Beim LCC-A F finden sich bereits bei 130 °C, also vor Zersetzung der eingebrachten Fasern (Schmelztemperatur ca. 160 °C), Poren mit Durchmessern > 1 µm. Es wird angenommen, dass die Fasern hier nur schwach im Materialgefüge eingebunden sind und sich entlang ihrer Oberfläche Bereiche mit erhöhter Porosität bilden. Im entsprechenden MCC-A F werden keine Poren in diesem Größenbereich detektiert, was auf eine stärkere Einbindung der Fasern durch eine stärkere Hydratphasenbildung erklärt werden kann.

Auch der LCC-P+Z bildet vorwiegend Poren im Bereich 0,1 bis 1 μm aus, daneben zeigt aber ein großer Anteil feinerer Porosität, dass der ursprüngliche Porenraum teilweise durch Hydratphasen eingenommen wird. Der höhere Zementanteil des MCC-P+Z bewirkt, dass sich der Einfluss der Hydratphasen auf das Porengefüge verstärkt. Damit können hier auch Veränderungen in Abhängigkeit von der Vorbehandlungstemperatur festgestellt werden. Der größte Anteil von Hydratphasen am Gesamtgefüge liegt bei 130 °C vor (siehe Kapitel 5.8.1). Dies zeigt sich in der PGV durch das Auftreten eines Peaks bei Porendurchmessern zwischen 0,02 und 0,06 μm. Die bei höheren Temperaturen eintretende Umwandlung und thermische Zersetzung von Hydratphasen führt ebenfalls zu Veränderungen im Porengefüge, die sich aber nicht eindeutig zuordnen lassen. Erst ab 300 °C sind im LCC-P+Z F größere Poren infolge der Zersetzung der eingebrachten Fasern erkennbar. Es kann nicht ausgeschlossen werden, dass diese bereits bei niedrigeren Temperaturen vorhanden sind, aber ihr Durchmesser die Obergrenze des Messbereichs überschreitet.

In den mit Polycarboxylatether verflüssigten Modelfeueretonen ist der Einfluss der Hydratphasen auf die PGV vergleichbar mit den P+Z-Feuerbetonen, steht aber noch stärker im Vordergrund. Bereits vor Temperaturbehandlung ist der Peak der Ausgangsverteilung für LCC-PC und MCC-PC im Vergleich zu den anderen Verflüssigern zu kleineren Porendurchmessern verschoben. Bei Temperaturbehandlung bildet sich für LCC-PC ein zweiter Peak im Bereich 0,02 bis 0,1 µm Porendurchmesser aus. Für den MCC-PC ist dieser Größenbereich dominierend.

Der Vergleich des Porendurchmesser-Medians (Bild 99) für die faserfreien MCC-Versätze zeigt, dass der überwiegende Anteil des Porenvolumens im mit Acrylat verflüssigten Feuerbeton durch Poren gebildet wird, die deutlich größer sind als bei P+Z oder PC. Es kann davon ausgegangen werden, dass die kleineren Porengrößen von MCC-P+Z und MCC-PC im Vergleich zum MCC-A auf eine deutlich geringere Dampfdurchlässigkeit der Feuerbetone hinweisen.

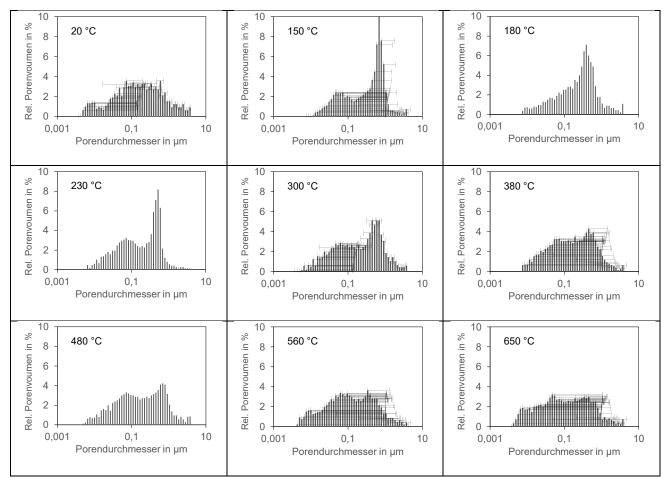


Bild 92: Mittels Quecksilberdruckporosimetrie gemessene Porengrößenverteilung des Referenzversatzes (RC) nach unterschiedlicher Temperaturbehandlung.

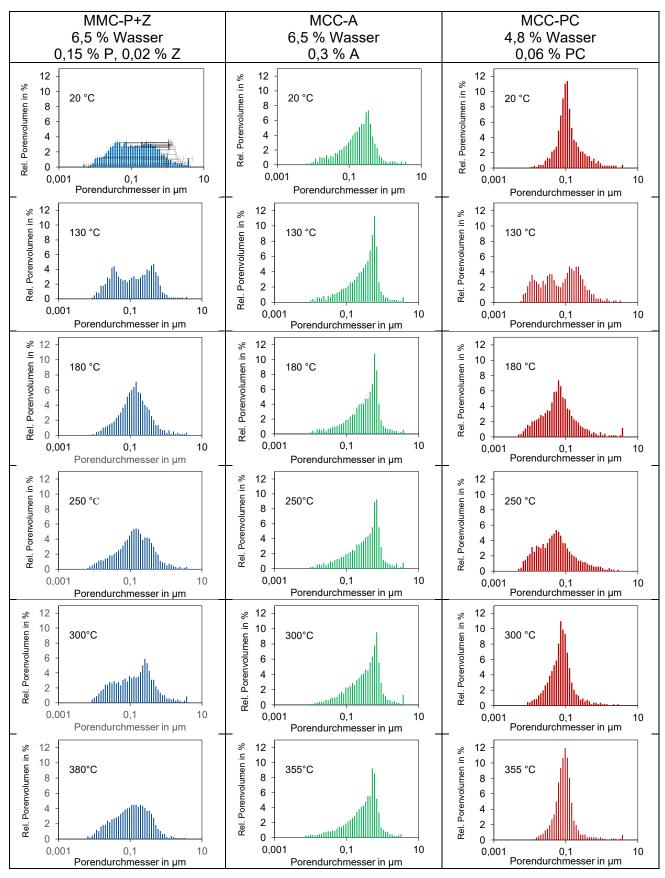


Bild 93: Porengrößenverteilung MCC mit verschiedenen Verflüssigern nach Temperaturbehandlung.

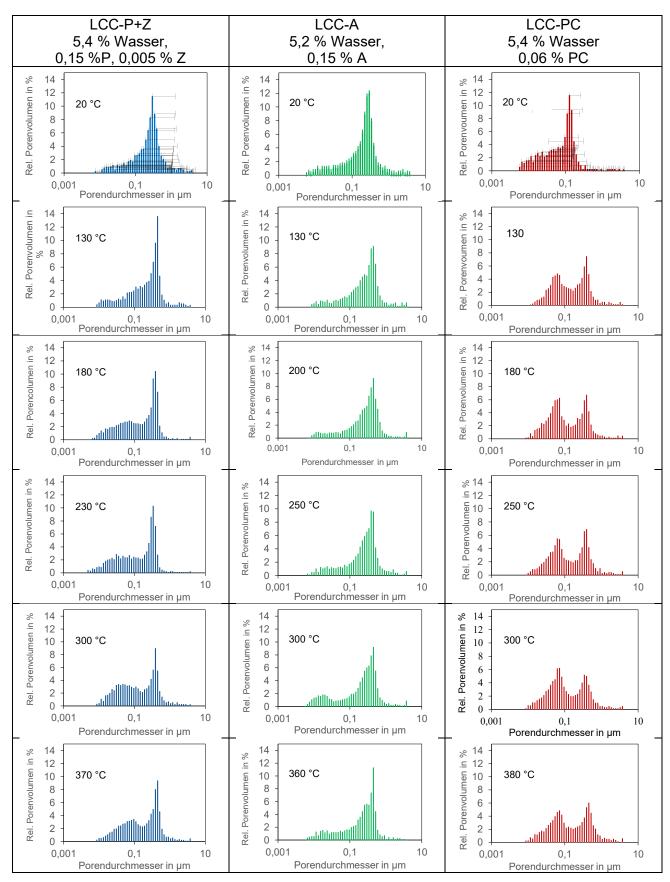


Bild 94: Porengrößenverteilung LCC mit verschiedenen Verflüssigern nach Temperaturbehandlung.

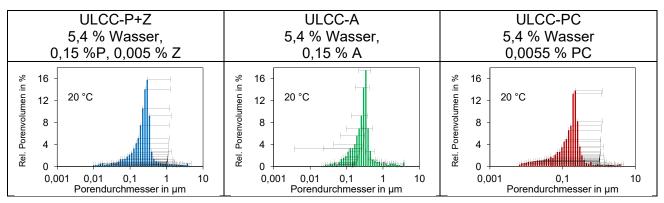
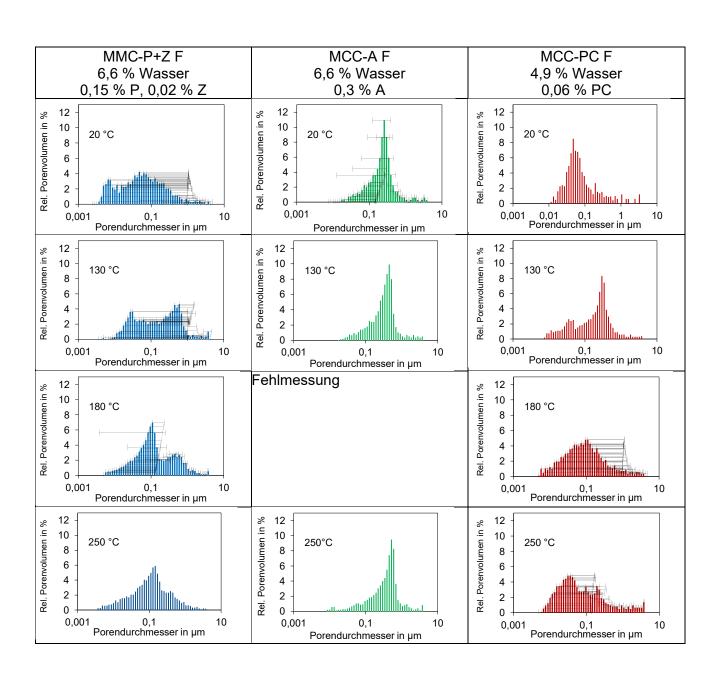



Bild 95: Porengrößenverteilung ULCC mit verschiedenen Verflüssigern nach dem Abbinden.

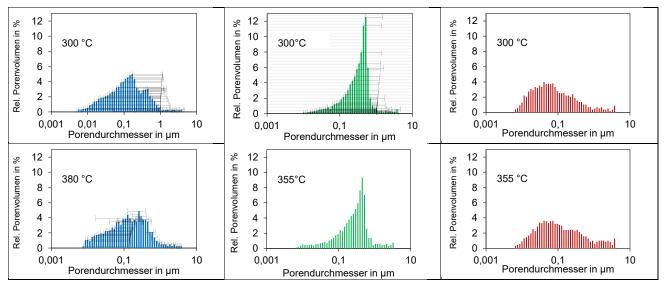
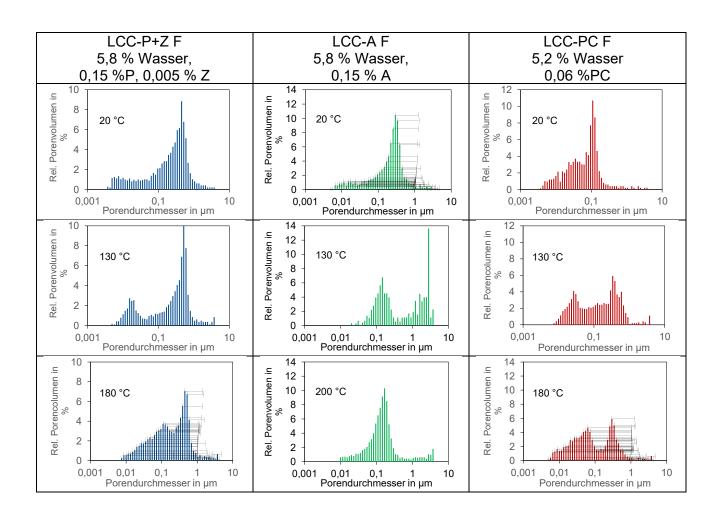



Bild 96: Porengrößenverteilung faserhaltiger MCC mit verschiedenen Verflüssigern nach Temperaturbehandlung.

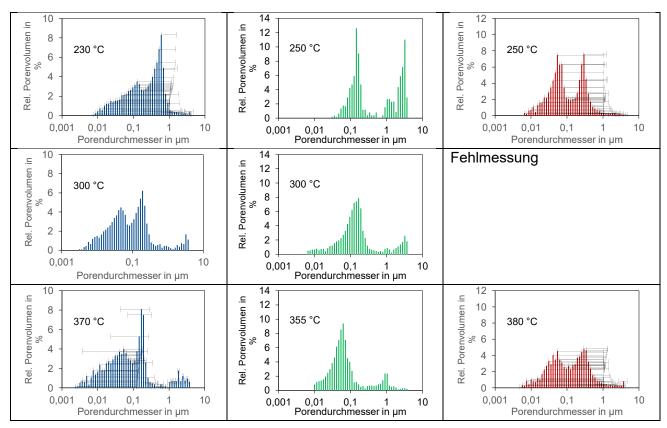
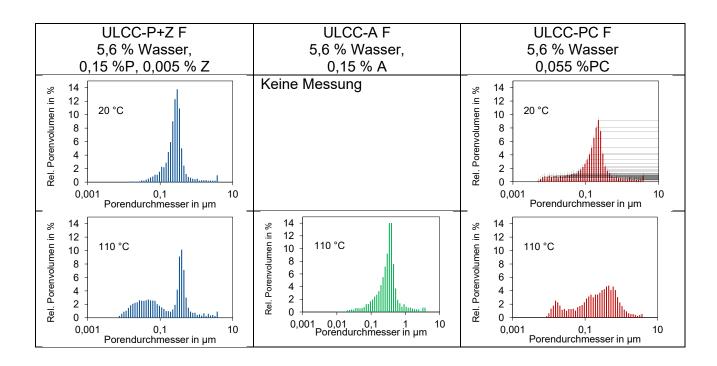



Bild 97: Porengrößenverteilung faserhaltiger LCC mit verschiedenen Verflüssigern nach Temperaturbehandlung.

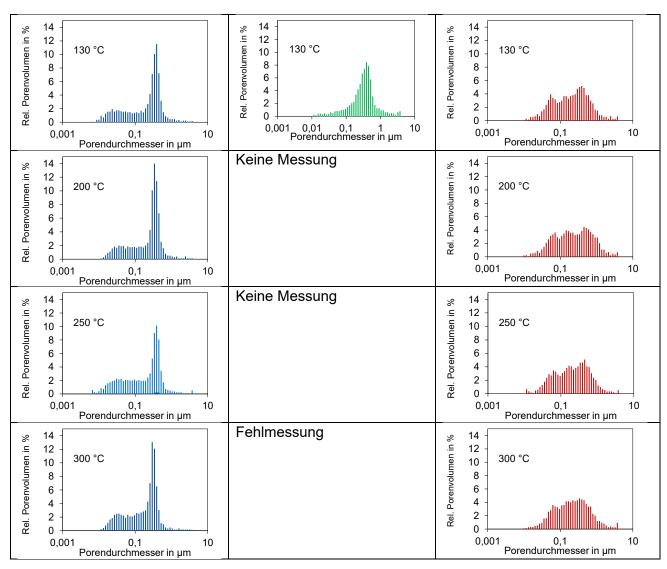


Bild 98: Porengrößenverteilung faserhaltiger ULCC mit verschiedenen Verflüssigern nach Temperaturbehandlung.

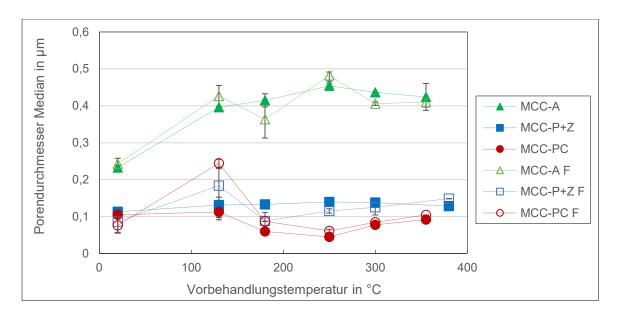


Bild 99: Median-Porendurchmesser für alle MCCs vor und nach Temperaturbehandlung. Fehlerbalken zeigen die höchsten/niedrigsten Ergebnisse von Mehrfachmessungen an. Bereits vor der Temperaturbehandlung entfallen mehr als 50 % des Porenvolumens in MCC-A auf Poren mit einem Durchmesser von mehr als 0,2 µm. Nach einer Behandlung bei 130 °C oder höher liegt der Schwellenwert über 0,4 µm. Bei MCC-P+C und MCC-PCE bleibt die mittlere Porengröße bei allen Vorbehandlungstemperaturen niedriger. Die durch Fasern verursachten Poren liegen mit zu erwartenden Durchmessern von 10-20 µm außerhalb des Messbereichs.

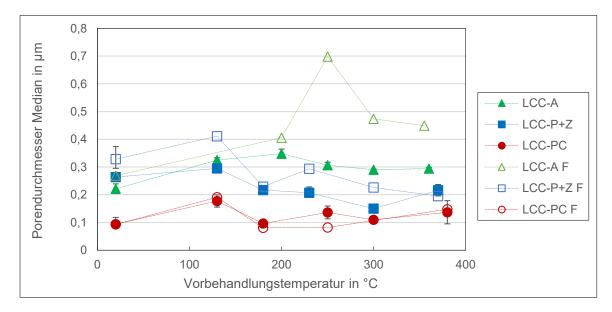


Bild 100: Median-Porendurchmesser für alle LCCs vor und nach Temperaturbehandlung. Die PGV der faserhaltigen LCC nach Temperaturbehandlung wurde nur einmalig bestimmt. Bei diesen werden ab 130 °C große Poren detektiert, die durch den auf maximal 4 µm Porendurchmesser begrenzten Messbereich nicht vollständig erfasst werden. Der ermittelte Median wird maßgeblich von diesen großen Poren beeinflusst und zeigt daher unregelmäßige Schwankungen (vgl. auch Bild 101). Wie bei den MCC zeigen die Feuerbetone mit Acrylat den höchsten, die Feuerbetone mit PC den niedrigsten Median. Bei LCC-P+Z werden deutlich weniger feine Poren detektiert als im entsprechenden MCC Die Unterschiede zwischen den verschiedenen Verflüssigern sind weniger stark ausgeprägt als bei MCC.

Bild 101: Median-Porendurchmesser der ULCCs vor und nach Temperaturbehandlung. Faserfreie ULCC und ULCC-A F wurden nur ohne vorhergehende Temperaturbehandlung untersucht. Die faserhaltigen ULCC zeigen bei Mehrfachmessungen große Schwankungen des Porengrößen-Medians, die auf große Poren an der Grenze des Messbereichs zurückzuführen sind. Bei Überschreiten der Obergrenze von 4 µm werden diese Poren nicht mehr vollständig erfasst.

5.8.6. Untersuchung der Permeabilität

Die Messung der Permeabilität erfolgte mit einem VacuPerm Versuchsstand (siehe Abschnitt 4.3.7). Dabei wird in einer von einem Prüfkörper verschlossenen Kammer ein Vakuum erzeugt. Die Permeabilität wird auf Basis der Zeit errechnet, die benötigt wird, bis ein Luftstrom durch den Prüfkörper zur Angleichung des Kammerdruckes an den Umgebungsdruck führt. Dazu wurden Vergleichsmessungen an bei verschiedenen Temperaturstufen vorbehandelten und wieder auf Raumtemperatur abgekühlten Proben des Referenzversatzes (RC) und der mit verschiedenen Verflüssigern versetzten LC-Modellfeuerbetone durchgeführt (siehe Tabelle 12). Die Ergebnisse sind in Bild 102 dargestellt. Nach Vorbehandlung bei 150 °C zeigt der RC eine höhere Permeabilität als die verflüssigten Feuerbetone nach Vorbehandlung bei 130 °C. Nach weiterem Erhitzen auf bis zu 250 °C vermindert sich die Permeabilität zunächst und nimmt dann wieder zu.

Mit zunehmender Vorbehandlungstemperatur entwickelt sich die Permeabilität der Feuerbetone in Abhängigkeit vom zugesetzten Verflüssiger unterschiedlich. Für LCC-P+Z reduziert sich die Permeabilität zwischen 130 °C und 180 °C) und bleibt auch bei höherer Temperatur unverändert bei ca. 0,05 mD an der Untergrenze des Messbereichs. Trotz geringer offener Porosität zeigt der LCC-PC bei 130 °C die höchste gemessene Permeabilität unter den untersuchten verflüssigten Feuerbetonen. Diese hohe gemessene Permeabilität ist im Zusammenhang mit der relativ geringen Menge an verwendetem Anmachwasser und der geringen offenen Porosität des LCC-PC nicht direkt nachvollziehbar. Aber auch hier fällt die Permeabilität zwischen 130 °C und 180 °C ab, nimmt dann aber bei weiterem Erhitzen bis 300 °C wieder zu. Dies resultiert in einer etwa 4fach höheren Permeabilität als

bei LCC-P+Z im oberen Temperaturbereich. Im LCC-A nimmt die Permeabilität bis 300 °C stetig zu. Oberhalb von 300 °C wurde bei keinem der verwendeten Verflüssiger eine weitere Erhöhung der Permeabilität festgestellt. Die Verminderung der Permeabilitäten der LCC-PC und LCC-P+Z könnte mit der Nachhydratation erklärt werden. Bei dem LCC-A ist davon auszugehen, dass das zur Nachhydratation benötigte Porenwasser den Feuerbeton in diesem Temperaturbereich bereits verlassen hat oder dass die hydratationshemmende Wirkung des Acrylats auch bei erhöhten Temperaturen gegeben ist.

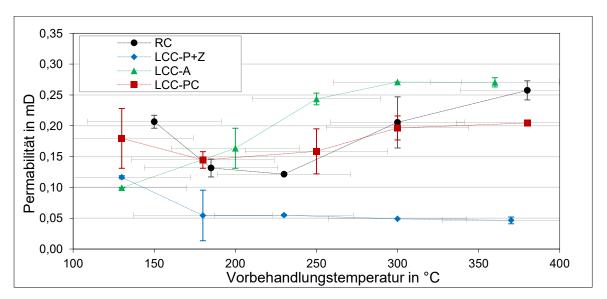


Bild 102: Permeabilität des RC und der mit verschiedenen Verflüssigern versetzen LCCs nach Erhitzen auf festgelegte Temperaturen (Tabelle 12) und anschließender Gefriertrocknung. Abhängig vom eingesetzten Verflüssiger entwickelt sich die Permeabilität während des Erhitzens unterschiedlich.

6. Zusammenfassung und Diskussion der erzielten Ergebnisse

6.1. Versatzentwicklung und Charakterisierung der Modellfeuerbetone

Zur Untersuchung des Einflusses der Porosität auf die Hydratphasenentwicklung und die für das Aufheizverhalten relevanten technischen Eigenschaften (Biegezugfestigkeit, Porosität, Permeabilität) wurden drei anwendungsnahe, korundbasierte Modell-Feuerbetone mit unterschiedlichem Zementgehalt (Grundversätze: MCC, LCC und ULCC gemäß DIN EN ISO 1927-1) entwickelt. Durch die verschiedene Menge des für die hydraulische Bindung zur Verfügung stehenden Zementklinkers wurde eine unterschiedliche Mikrostruktur der abgebundenen Modellfeuerbetone erreicht. Von diesen drei Grundversätzen wurden jeweils drei Modifikationen mit unterschiedlichen Verflüssigern hergestellt, um zu untersuchen, wie Verflüssiger das Wachstum der Zementhydratphasen (Art, Menge, Größe und Morphologie) beeinflussen. Diese neun Modifikationen wurden ohne und mit Zusatz von Polypropylen-Fasern (PP-Fasern) hergestellt, um das Porengefüge der Modell-Feuerbetone weiter zu variieren. Als Referenzbeton wurde ein ebenfalls korundbasierter Regular Castable (RC) mit einem Zementgehalt von 20 Ma.-% ausgewählt. Tabelle 22 gibt einen Überblick über die untersuchten Feuerbeton-Modifikationen und die Kurzbezeichnungen der Feuerbetone und Verflüssiger.

Tabelle 22: Übersicht der entwickelten Modell-Feuerbetone.

Grundversatz		Verflüssiger		
ohne Fasern	Zement- gehalt in Ma%	Natriumpolyphosphat und Zitronensäure (P+Z)	Acrylat (A)	Polycarboxylatether (PC)
RC	20			
MCC	10	MCC-P+Z	MCC-A	MCC-PC
LCC	5	LCC-P+Z	LCC-A	LCC-PC
ULCC	2	ULCC-P+Z	ULCC-A	ULCC-PC
mit Fasern				
MCC F	10	MCC-P+Z F	MCC-A F	MCC-PC F
LCC F	5	LCC-P+Z F	LCC-A F	LCC-PC F
ULCC F	2	ULCC-P+Z F	ULCC-A F	ULCC-PC F

Die Charakterisierung des Referenzversatzes (RC) und der 18 verflüssigten Modell-Feuerbetone hinsichtlich ihrer Rheologie, des Abbindeverhaltens, der technologischen Eigenschaften nach Trocknung (24 h bei 110 °C) und nach Brand bei 1000 °C (Haltezeit 2 h) sowie ihres Gefügeaufbaus stellte sicher, dass die entwickelten Modellfeuerbetone anwendungsnahe Eigenschaften aufweisen und die erzielten Ergebnisse auf industriell eingesetzte Feuerbetone übertragbar sind.

Rheologie (Kapitel 5.2.1): Es war angestrebt, miteinander vergleichbare Modellfeuerbetone zu entwickeln, die sich, außer im eingesetzten Verflüssigersystem, nur wenig unterscheiden. Insbesondere sollte durch das Angleichen des Ausbreitmaßes unter Beibehaltung des Anmachwassermenge eine ähnliche Verdichtung für alle Verflüssigersysteme erreicht werden. Dazu wurde die Menge der eingesetzten Verflüssiger variiert. Während der Versatzentwicklung und der anschließenden Charakterisierung der Modellfeuerbetone zeigte sich, dass die unterschiedlichen Verflüssiger, bei angeglichenem Wassergehalt und Ausbreitmaß, sehr unterschiedliche rheologischen Eigenschaften bewirken. Die Verwendung von PC führt zu einer deutlich stärkeren Verflüssigung als P+Z oder A und in der Folge zu einer höheren Verdichtung. Der mit Acrylat verflüssigte Modellfeuerbeton zeigte zudem dilatantes Verhalten. Die Angleichung des Ausbreitmaßes führte daher nicht zu einer gleichartigen Verdichtung der Modell-Feuerbetone.

Abbindeverhalten (Kapitel 5.2.1): Der Abbindeprozess wurde in einem Zeitraum von 48 Stunden nach dem Mischen über die Entwicklung der Ultraschallgeschwindigkeit (US) als Maß für die erreichte Festigkeit, der elektrischen Leitfähigkeit und des pH-Werts untersucht. Dabei zeigten sich deutliche Unterschiede sowohl zum Referenzversatz als auch zwischen den mit verschiedenen Verflüssigern versetzen Modellfeuerbetonen. Erwartungsgemäß verringert sich die beim Abbinden erreichte Festigkeit systematisch mit abnehmenden Zementgehalt, wie der Vergleich der gegen Ende des 48stündigen Abbinde-Zeitraums gemessenen US-Geschwindigkeit für MCC (3200-5000 m/s), LCC (2700-3700 m/s) und ULCC (2900-2600 m/s) zeigt. Alle getesteten Verflüssiger zeigen eine festigkeitssteigernde Wirkung im Vergleich zum Referenzbeton (RC), da diese durch die Verflüssigung dichter gepackt sind und weniger Wasser enthalten. Dabei wurden deutliche Unterschiede zwischen den verschiedenen eingesetzten Verflüssigern und deren Auswirkung auf die nach Ende des Abbindezeitraums von 48 Stunden erreichte Festigkeit nachgewiesen. Diese Unterschiede sind umso stärker ausgeprägt, je höher die Zementanteile der Feuerbetone sind. Die höchste US-Geschwindigkeit wurde bei den mit PC verflüssigten Feuerbetonen beobachtet. Bei hohem Zementgehalt zeigten mit P+Z verflüssigte Feuerbetone eine höhere US-Geschwindigkeit als Feuerbetone mit A, bei niedrigem Zementgehalt (ULCC) ist die nach 48 Stunden gemessene US-Geschwindigkeit bei allen Verflüssiger-Systemen annähernd gleich. Die Festigkeitsentwicklung der verflüssigten Feuerbetone verläuft gegenüber dem RC-Referenzbeton verzögert. Die verflüssigten Feuerbetone benötigen daher eine verlängerte Hydratationszeit, um die für ein sicheres Aufheizen benötigte Festigkeit zu erzielen. Während bei RC der Abbindeprozess bereits nach 6 Stunden weitgehend abgeschlossen ist, verlängert sich dieser Zeitraum bei Feuerbetonen mit geringerem Zementgehalt, je nach eingesetztem Verflüssiger auf bis zu 40 Stunden (LCC-A).

Im Hinblick auf das Aufheizverhalten der Modellfeuerbetone bleibt festzuhalten, dass bei Verwendung von Verflüssigern auch bei reduziertem Zementgehalt hohe Festigkeiten erreicht werden, wodurch sie einem höheren Poreninnendruck widerstehen können. Gleichzeitig wird durch den verringerten

Wasserbedarf der verflüssigen Feuerbetone beim Aufheizen insgesamt weniger Wasserdampf freigesetzt, sodass das Gefüge letztlich bei einer vergleichsweise niedrigen Temperatur bereits vom Porenwasser befreit ist und so die maximalen Wasserdampfdrucke vermindert werden.

Je nach Art des verwendeten Verflüssigers ist die festigkeitssteigernde Wirkung sehr unterschiedlich ausgeprägt. Eine mögliche Erklärung für die Unterschiede in den erreichten Festigkeitsniveaus bei Einsatz verschiedener Verflüssiger ist eine unterschiedlich starke Hydratation der Zementphasen während des Abbindens bei der gegeben Lagerungstemperatur (20 °C). Nach dem Abbindezeitraum noch vorhandene, nicht hydratisierte Zementphasen können während der anschließenden Erhitzung des Feuerbetons mit dem noch vorhandenen Porenwasser bis zu dessen vollständiger Trocknung weiter reagieren. Damit kommt bei Feuerbetonen mit geringer Anfangsfestigkeit beim Aufheizen dem unteren Temperaturbereich besondere Bedeutung zu. Zum einen fördert eine mäßige Temperaturerhöhung die Nachhydratation von residualen Zementphasen. Zum anderen muss der Feuerbeton bei einer Temperatur nahe dem Siedepunkt des Wassers getrocknet werden, damit der entstehende Wasserdampf entweichen kann, ohne dass es zu einem gefährlich starken Druckanstieg in den Poren kommt.

Das in Hydratphasen gebundene Wasser wird erst bei höheren Temperaturen durch deren Zersetzung wieder freigesetzt. Kann das Wasser in dichten Feuerbetonen nicht ausreichend schnell entweichen, entsteht ein hoher Wasserdampfdruck, der wiederum zur Zerstörung des Feuerbetons führen kann. Bei einem niedrigen Hydratationsgrad ist im abgebundenen Feuerbeton weniger Wasser in Hydratphasen gebunden. Bleibt der Hydratationsgrad auch beim Aufheizen gering, erleichtert dies bei den dann zu erwartenden niedrigen Festigkeitswerten ein schadenfreies Aufheizen, unter der Voraussetzung, dass der Feuerbeton bereits bei Temperaturen im Bereich des Siedepunktes und damit bei geringem Dampfdruck vollständig getrocknet wird.

Zur Charakterisierung der **technologischen Eigenschaften** der entwickelten Feuerbetone wurden deren offene Porosität und Biegezugfestigkeit nach Trocknen für 24 Stunden bei 110 °C und nach dem Brennen gemessen. Darüber hinaus wurden die Porengrößenverteilung (Quecksilberdruckporosimetrie), ebenso wie die Art und Morphologie der gebildeten Hydratphasen (Röntgenbeugungsanalyse und Rasterelektronenmikroskopie) untersucht.

Offene Porosität (Kapitel 5.2.2): Die offene Porosität (OP) der Feuerbetone wird durch die Verflüssiger, die zur Erzielung geeigneter Verarbeitungseigenschaften erforderliche Menge an Anmachwasser und den Zementgehalt bestimmt. Im Rahmen der Versatzentwicklung wurde die Porosität systematisch verändert: 1. durch unterschiedliche Zementgehalte (10 Ma.-% in den MCC, 5 Ma.-% in den LCC und 2 Ma.-% in den ULCC) und 2. durch Zugabe von PP-Fasern, die während des Erhitzens bei ca. 160 °C schmelzen, schließlich ausbrennen und dabei zusätzliche Porosität in Form von durchströmbaren Kanälen mit Durchmessern von 10-20 μm hinterlassen.

Je höher der Zementanteil in der Feuerbetonmischung, desto geringer ist die offene Porosität des Feuerbetons nach der Trocknung, da die Hydratphasen den Porenraum einnehmen, aber umso mehr neue Porosität entsteht beim Brennen aufgrund der Zersetzung von Hydratphasen, wie Bild 103 und Bild 104 zeigen. In Bild 103 wurde der Einfluss des Wassergehaltes rechnerisch eliminiert. Damit wird deutlich: Die verwendeten Verflüssiger haben einen großen Einfluss auf die offene Porosität nach dem Trocknen, der sich mit steigendem Zementgehalt verstärkt. Während die OP der ULCC-Varietäten mit 2 Ma-% Zement annähernd übereinstimmt, wurde für den MCC-PC eine weit geringere OP ermittelt als für die MCC mit A oder P+Z.

Nach dem Brand ist die offene Porosität der faserfreien Modell-Feuerbetone weitgehend angeglichen. Die noch bestehenden Unterschiede korrelieren mit der Menge des jeweils zugegebenen Anmachwassers, unabhängig vom Zementgehalt und der Art des Verflüssigers (siehe Bild 41).

Außer durch den Zementanteil wurde die Porosität der Feuerbetone durch die Zugabe von PP-Fasern variiert. Die faserhaltigen Feuerbetone besitzen meist bereits nach dem Trocknen eine höhere offene Porosität als die entsprechenden faserfreien Feuerbetone. Dies ist mit einem höheren Bedarf an Anmachwasser bei den faserhaltigen Feuerbetonen erklärbar.

Bei Zugabe von Fasern wurde nach dem Brand, im Vergleich mit den faserfreien Feuerbetonen, eine höhere Porosität festgestellt als bei den entsprechenden faserfreien Feuerbetonen, jedoch ist keine systematische Erhöhung der Differenz zwischen der OP nach Brand und der OP nach Trocknung feststellbar (Bild 104). Bei Verflüssigung mit PC zeigen die LC- und MC-Feuerbetone nach dem Trocknen eine geringe Porosität. Nur in diesem Fall wird mit Fasern, nach dem Brand, eine signifikant höhere offene Porosität (+10,9 % bei MCC-PC, +13,3 % bei MCC-PC F) gemessen als bei den faserfreien Feuerbetonen. Bei allen ULCC-Varietäten, die bereits nach dem Trocknen eine hohe offene Porosität zeigen, ist die OP-Zunahme nach dem Brennen der Feuerbetone mit +1,3 bis +2,4 % gering und für Feuerbetone mit und ohne Fasern und annähernd gleich. Die Ergebnisse zeigen, dass die Zugabe von Fasern nur bei geringer Ausgangsporosität zu einer signifikanten Erhöhung der offenen Porosität nach Zersetzung führt.

Bild 103: Offene Porosität der Modellfeuerbetone nach dem Trocknen (110 °C, 24 h). Die rechnerische Elimination des Einflusses von Unterschieden in der Wasserzugabe verdeutlicht die Einflüsse von Verflüssigersystem und Zementgehalt.

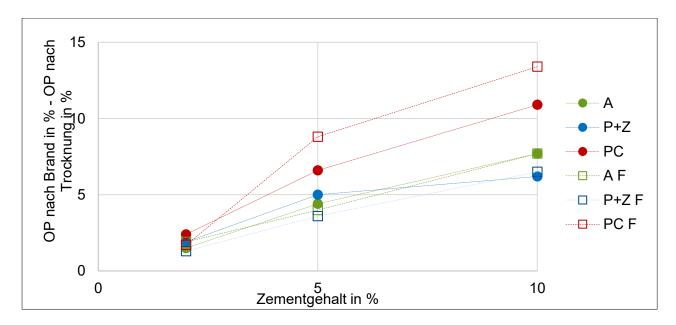


Bild 104: Erhöhung der offenen Porosität beim Brand der zuvor getrockneten Feuerbetone.

Kaltbiegezugfestigkeit (Kapitel 5.2.2): Mit zunehmendem Zementgehalt nimmt die Biegezugfestigkeit (KBF) sowohl der getrockneten als auch der gebrannten Feuerbetone zu. Die Zugabe von Verflüssigern steigert, im Vergleich zum RC, die Biegefestigkeit im getrockneten und im gebrannten Zustand. Im Fall der Messungen nach dem Trocknen ist dies hauptsächlich auf die generell geringere

offene Porosität zurückzuführen, aber auch MCC und LCC mit annähernd gleicher oder höherer offener Porosität als RC zeigen eine höhere KBF als der Referenzversatz. Dagegen besteht, wie Bild 105 zeigt, nach dem Brennen keine erkennbare Korrelation der KBF mit der offenen Porosität, jedoch eine Abhängigkeit vom ursprünglichen Zementgehalt. Wie stark sich der höhere Zementgehalt auf die KBF auswirkt, ist wiederum abhängig vom verwendeten Verflüssiger. Wird der Zementgehalt von 2 Ma.-% (ULCC) auf 5 Ma.-% (LCC) gesteigert, ist bei allen untersuchten Verflüssiger-Systemen eine Zunahme der Festigkeit festzustellen. Bei weiterer Erhöhung des Zementgehaltes auf 10 Ma.-% (MCC) ist eine Zunahme nur noch beim Feuerbeton mit PC und, in geringerem Umfang, beim Feuerbeton mit (P+Z) erkennbar.

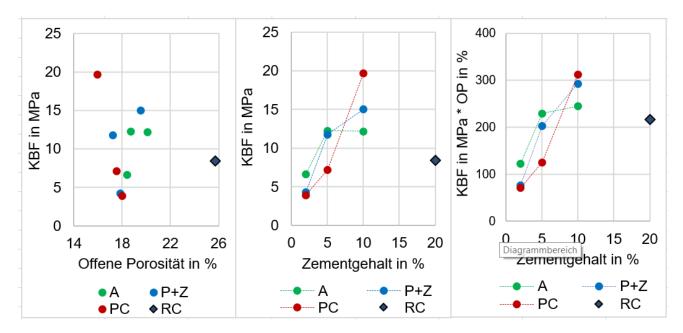


Bild 105: Biegezugfestigkeit (KBF) gebrannter Modellfeuerbetone in Abhängigkeit von offener Porosität und Zementgehalt. Zwischen KBF und offener Porosität ist keine Korrelation erkennbar (links). Die KBF nimmt mit dem Zementgehalt zu, aber je nach verwendetem Verflüssiger unterschiedlich stark (Mitte). Der Vergleich mit der Darstellung nach rechnerischer Elimination der offenen Porosität (rechts) bestätigt, dass diese nur geringen Einfluss auf die KBF nach dem Brennen hat.

Im getrockneten wie im gebrannten Zustand zeigen die faserhaltigen Modellfeuerbetone in der Regel eine geringere Biegefestigkeit als die entsprechenden faserfreien Feuerbetone. Eine mögliche Ursache ist, dass die faserhaltigen Feuerbetone mehr Anmachwasser benötigen. Bei mit Polycarboxylatether verflüssigen Feuerbetonen hat die Faserzugabe keinen erkennbaren Einfluss auf die Biegezugfestigkeit.

Fazit der technologischen Untersuchungen nach Trocknung und Brand: Der Einsatz von Verflüssigern wirkt sich positiv auf das Aufheizverhalten von Feuerbetonen aus. Zum einen wird die Biegezugfestigkeit der Feuerbetone gesteigert, sodass sie dem beim Aufheizen entstehenden Porendruck besser Stand halten können. Nur bei sehr geringem Zementgehalt (ULCC: 2 Ma.-% Zement)

bleibt die KBF unterhalb der des Referenzbetons (20 Ma.-% Zement). Zum anderen wird durch die Verringerung des Zementgehalts auch weniger Wasser in Hydratphasen gebunden, so dass bei deren Zersetzung in geringerem Umfang Wasser freigesetzt wird, das durch die Poren des Feuerbetons entweichen muss. Damit kann sich bei gleicher Porosität weniger Poreninnendruck aufbauen. Dabei bestehen aber große Unterschiede zwischen den eingesetzten Verflüssigern, sowohl bei der Porosität als auch hinsichtlich der Menge der gebildeten Hydratphasen und damit der erreichten Festigkeit nach dem Abbinden. Eine geringe Festigkeit geht bei den hier untersuchten Modell-Feuerbetonen mit einer hohen offenen Porosität einher und wird daher in Bezug auf die Sicherheit beim Aufheizen teilweise durch die Dampfdurchlässigkeit kompensiert.

Mikroskopische Untersuchungen (REM) (Kapitel 5.2.3): In den untersuchten MC-Feuerbetonen werden übereinstimmend in geringem Umfang dünntafelige CAH₁₀-Kristalle gebildet. Deutliche Unterschiede sind bei der Bildung von Aluminiumhydrat (als Gel oder Gibbsit) zu erkennen. Nur mit (P+Z) und PC ist eine Verdichtung der Matrix durch eine gelförmige Phase erkennbar, bei der es sich vermutlich um amorphes AH_x-Gel handelt. Die feinkristalline Erscheinungsform des Gibbsits bei Verwendung von PC lässt, aufgrund der großen Oberfläche, zunächst eine hohe Reaktivität und damit eine frühere Zersetzung beim Aufheizen des Feuerbetons vermuten als mit (P+Z), jedoch kann durch die Austrocknung und einsetzende Kristallisation des AH_x-Gels bei (P+Z) eine ähnlich große Oberfläche entstehen. Grundsätzlich ist eine frühe Zersetzung von Hydratphasen vorteilhaft für das Aufheizverhalten der Feuerbetone, da das Hydratwasser dann bereits bei niedrigeren Temperaturen und damit korrespondierendem niedrigen Druck freigesetzt wird.

Anhand der REM-Aufnahmen von MCC-P+Z und MCC-PC ist keine unterschiedliche Porosität erkennbar, die Matrix bei MCC-A erscheint im Vergleich weit poröser. Dagegen ergibt die Messung der offenen Porosität der Feuerbetone MCC-A und MCC-P+Z ähnliche Werte, während die offene Porosität des MCC-PC deutlich niedriger ist. Somit können Unterschiede in der offenen Porosität nicht auf visuell erkennbare Unterschiede in der Mikrostruktur zurückgeführt werden.

Für das Aufheizverhalten der untersuchten Feuerbetone wird der durchlässigen Matrixstruktur und der geringeren Menge kristalliner Hydratphasen bei Verflüssigung mit Acrylat größere Bedeutung beigemessen als den graduellen Unterschieden in der Morphologie der Gibbsit-Kristalle bei Verwendung vom Phosphat und Zitronensäure oder Polycarboxylatether.

6.2. Methoden zur Unterstützung der Interpretation des Trocknungs- bzw. Entwässerungsverhaltens – Charakterisierung der Feuerbetone nach thermischer Vorbehandlung

Analog zu der Charakterisierung der thermisch getrockneten und gebrannten Modell-Feuerbetone wurden die bei jeweils fünf verschiedene Temperaturstufen (siehe Tabelle 12) thermisch vorbehan-

delten Feuerbetone hinsichtlich ihrer offenen Porosität, Porengrößenverteilung und Biegezugfestigkeit untersucht. Zusätzlich wurden Art, Menge und Morphologie der gebildeten Hydratphasen charakterisiert und an RC und LCC mit verschiedenen Verflüssigern die Permeabilität bestimmt.

Offene Porosität (Kapitel 5.8.4): Bei Verflüssigung mit Polycarboxylatether wird in allen Modellfeuerbetonen sowohl nach der Hydratation im Klimaschrank als auch nach der thermischen Vorbehandlung, eine niedrigere offene Porosität (OP) festgestellt als mit den Verflüssigersystemen Acrylat oder Natriumpolyphosphat + Zitronensäure (Bild 69 bis Bild 71).

Bei allen untersuchten Verflüssiger-Systemen zeigen die Modellfeuerbetone bis zur Temperaturstufe 250 °C eine stetige Zunahme der offenen Porosität bei steigender Vorbehandlungstemperatur. Die Zunahme ist umso stärker, je höher der Zementgehalt des Feuerbetons ist.

Mögliche Ursachen für die Zunahme der OP bei steigender Vorbehandlungstemperatur sind:

- Umwandlung wasserreicher Hydratphasen (AH_x-Gel, AH₃, CAH₁₀, C₂AH₈) in wasserärmere Hydratphasen (AH, C₃AH₆),
- Zersetzung der zuvor gebildeten Hydratphasen,
- Bevorzugte Bildung von wasserarmen Hydratphasen bei h\u00f6heren Temperaturen, zulasten der wasserreicheren Hydratphasen, wenn der Stabilit\u00e4tsbereich der wasser\u00e4rmeren Hydratphasen durch die Aufheizrate von 250 K/h zu schnell durchlaufen wird.

Das nicht in Hydratphasen gebundene bzw. bei der Umwandlung/Zersetzung freiwerdende Wasser hinterlässt zusätzlichen Porenraum im Feuerbeton. Ab 300 °C Vorbehandlungstemperatur wurde mit Wasserauftriebswägung teilweise eine verminderte Porosität gemessen. Eine Verminderung der offenen Porosität während der Temperaturbehandlung ist in diesem Temperaturbereich aber nicht plausibel, da kein, für die Bildung von Hydratphasen notwendiges, Wasser mehr vorhanden ist. Daher wird die verminderte offene Porosität auf die Rehydratisierung der entwässerten Mineralphasen durch das bei der Messung verwendete Wasser zurückgeführt. Stichprobenhafte Kontrollmessungen, bei denen ein alternatives Tränkmedium (Paraffinöl) eingesetzt wurde, zeigten auch bei Temperaturen über 250 °C eine Zunahme der offenen Porosität.

Diese Ergebnisse zeigen, dass durch die Zersetzung von Zementhydratphasen bei über 250 °C im thermisch vorbehandelten Feuerbeton wieder hydratisierbare Mineralphasen vorliegen. Die deutliche Verminderung der offenen Porosität bereits nach einer Stunde Lagerung der Feuerbetone in Wasser ist durch die Morphologie zu erklären. Da während der thermischen Behandlung in diesem Temperaturbereich kein Wasser mehr vorliegt, das den für eine Umkristallisation erforderlichen Stofftransport ermöglichen würde, ist davon auszugehen, dass hydratisierbare Mineralphasen pseudomorph nach den fein kristallinen Hydratphasen vorliegen, aus deren Dehydrierung sie hervorgehen. Diese Mineralphasen weisen damit eine große spezifische Oberfläche und in der Folge eine hohe Reaktivität auf.

Die faserhaltigen Feuerbetone zeigen bereits nach dem Abbinden eine höhere offene Porosität als die entsprechenden faserfreien Feuerbetone. Die Zunahme der offenen Porosität beim Überschreiten des Schmelzpunktes der Fasern (160 °C) ist nicht signifikant höher als bei faserfreien Feuerbetonen und kann daher, wie bereits bei der Charakterisierung der Feuerbetone im Rahmen der Versatzentwicklung festgestellt (Kapitel 6.1), nicht eindeutig mit dem Schmelzen und Ausbrennen von Fasern korreliert werden.

Porengrößenverteilungen (Kapitel 5.8.5): Die Porengrößenverteilungen (PGV) zeigen vielfach einen dominanten Porengrößenbereich von 0,1 μm bis 1,0 μm. Diese Verteilung wird weitgehend durch die Korngrößen der in die Feuerbetone eingebrachten Feststoffe bestimmt. Veränderungen der PGV durch das vermehrte Auftreten feinerer Poren werden der Entwicklung von Hydratphasen im Feuerbeton zugeschrieben.

Die verwenden Verflüssiger haben großen Einfluss auf die Porengrößenverteilungen (PGV) der abgebundenen Feuerbetone und deren Entwicklung beim Erhitzen. Bei Verwendung des Verflüssigers Acrylat bleibt die monomodale Verteilung der Porengrößen mit vorherrschenden Porendurchmessern im Bereich von 0,1 µm bis 1,0 µm in allen Temperaturstufen bestehen. Dies ist mit nur in geringer Menge gebildeten Hydratphasen zu erklären. Die Zersetzung von Hydratphasen bei steigender Temperatur zeigt sich in der PGV als eine Verschiebung hin zu größeren Poren.

Mit der Verflüssiger-Kombination Natriumpolyphosphat + Zitronensäure führt die umfangreichere Hydratphasenbildung beim MCC bereits nach dem Abbinden zu einer breiten PGV mit einem großen Anteil von Poren < 0,1 μm, der in der Temperaturstufe 130 °C weiter zunimmt. Im LCC werden erst bei 130 °C vermehrt kleinere Poren detektiert, deren Anteil bis zu zur Temperaturstufe 300 °C zunimmt. Die Porengrößen der Polycarboxylatether-haltigen Feuerbetone zeigen nach dem Abbinden eine monomodale Verteilung mit einer im Vergleich zu den übrigen Modellfeuerbetonen geringeren vorherrschenden Porengröße. Während des Erhitzens entwickeln sich die PGV in den Feuerbetonen mit verschiedenen Zementgehalten unterschiedlich. Beim MCC-PC werden beim Erhitzen feine Poren gebildet, die bei 180 °C in der PGV zu einem einzelnen, aber breiten Peak mit einem Maximum bei ca. 0,07 μm führen. Beim LCC-PC liegt dagegen ab 130 °C eine bimodale Verteilung vor. Ein Peak zeigt hier vorwiegend Porengrößen von ca. 0,05 μm bis 0,1 μm an, die Position des zweiten Peaks entspricht der für Feuerbetone mit geringer Hydratphasenbildung. Eine mögliche Ursache für die stark abweichenden PGV von LCC und MCC ist neben der vermehrten Bildung von Hydratphasen im MCC, die im Falle des LCC beobachtete Entmischung des frischen Feuerbetons.

Die Poren in MCC-A sind im Mittel deutlich größer sind als in MCC-PC und MCC.P+Z. Bereits nach dem Abbinden liegt der Porendurchmesser-Median bei über 0,2 µm und damit mehr als doppelt so hoch wie für MCC-P+Z oder MCC-PC. Dieser Wert verdoppelt sich für MCC-A beim Erhitzen auf 130 °C, während bei MCC-P+Z und MCC-PC auch bei höherer Temperatur der überwiegende Teil des

Porenvolumens auf Poren < 0,15 μm Durchmesser entfällt. Die PGV umfasst dabei aber, bei MCC-P+Z, einen deutlich breiteren Größenbereich als bei MCC-PC.

Im Vergleich der Porengrößenverteilung faserhaltiger und faserfreier Modellfeuerbetone ist zu beachten, dass die eingebrachten Fasern bei 6 mm Länge einen Durchmesser von ca. 18 µm haben. Damit liegt der erwartete Durchmesser der durch ihr Ausbrennen erzeugten Porenkanäle außerhalb des dargestellten Messbereichs der PGV (0,004-4 µm).

Bei den faserhaltigen MCC sind in den mit (P+Z) oder A verflüssigten Feuerbetonen bei keiner Temperaturstufe deutliche Unterschiede zu den entsprechenden faserfreien MCC erkennbar. Der MCC-PC F zeigt in den Temperaturstufen 300 °C und 355 °C eine deutlich breitere PGV als der faserfreie MCC-PC, bei dem hier der Porengrößenbereich 0,02-0,2 µm vorherrscht.

Bei Zugabe von Fasern zu den untersuchten LCC ist bei LCC-A F im Unterschied zum faserfreien LCC-A mit steigender Vorbehandlungstemperatur eine Verschiebung des vorherrschenden Porengrößenbereichs von 0,1-1,0 μ m (vor der Temperaturbehandlung) zu feineren Poren mit einem vorherrschenden Porengrößenbereich von 0,01-0,1 μ m bei 355 °C erkennbar. Bei LCC-P+Z F verlagern sich die vorherrschenden Porengrößen in den beiden höchsten Temperaturstufen ebenfalls zu kleineren Durchmessern. Für die LCC-PC F ist kein Unterschied zu den faserfreien LCC-PC feststellbar. Sowohl beim LCC-A als auch beim LCC-P+Z sind bei Faserzugabe nach dem Erhitzen große Poren am oberen Rand des Messbereichs (> 1 μ m) zu erkennen.

Aufgrund der Explosionsneigung der faserfreien ULCC wurden diese nicht thermischer vorbehandelt. Ein Vergleich der faserhaltigen mit den faserfreien Feuerbetonen ist daher nicht möglich. Die faserhaltigen ULCC zeigen, ebenso wie die faserfreien ULCC, vor der Temperaturbehandlung eine vorherrschende Porengröße im Bereich 0,1 – 1 µm. Dieser Porengrößenbereich bleibt bei allen Temperaturstufen dominierend, zusätzlich werden Bei ULCC-P+Z F und ULCC-PC F nach der Temperaturbehandlung aber auch feinere Poren detektiert. Bei den ULCC-A F traten bei der Temperaturbehandlung trotz des Faseranteils mehrfach Explosionen auf. Diese Versuchsreihe wurde daher aus Sicherheitsgründen abgebrochen. Die bei 110 °C und 130 °C getemperten Proben des ULCC-A F zeigen keine Veränderung der Porengrößenverteilung nach dem Erhitzen.

Permeabilität (Kapitel 5.8.6): In Abhängigkeit vom zugesetzten Verflüssiger zeigen die thermisch vorbehandelten Feuerbetone eine unterschiedliche Entwicklung der Permeabilität mit steigender Vorbehandlungstemperatur.

Nach Vorbehandlung bei 130 °C besitzt LCC-A die niedrigste Permeabilität unter den getesteten LC-Feuerbetonen, diese nimmt aber mit zunehmender Vorbehandlungstemperatur stetig zu und übersteigt bereits ab 200 °C die Permeabilität des LCC-P+Z und LCC-PC. Für LCC-PC wurde, trotz geringer offener Porosität, nach Vorbehandlung bei 130 °C die höchste Permeabilität gemessen. Die

Permeabilität ist nach 180 °C vermindert, steigt dann in den höheren Temperaturstufen der Vorbehandlung aber wieder auf das ursprüngliche Niveau an. Damit bleibt die Permeabilität des LCC-PC zwar niedriger als die des LCC-A, ist aber im Vergleich zum mit P+Z verflüssigten Feuerbeton ab 300 °C etwa viermal höher. Bei LCC-P+Z ist die Permeabilität des Feuerbetons bei nach 130 °C niedriger als bei LCC-PC, nimmt bei180 °C Vorbehandlungstemperatur weiter ab und verbleibt in den höheren Temperaturstufen an der Untergrenze des Messbereichs.

Die zunehmende Permeabilität des mit Acrylat verflüssigten Feuerbetons lässt sich mit der im gleichen Temperaturbereich beobachteten Zunahme der Porendurchmesser korrelieren. Nur bei LCC-A geht die zunehmende Permeabilität auch mit einer Zunahme der offenen Porosität einher.

Die Entwicklung der Permeabilität kann nicht mit der offenen Porosität der Modellfeuerbetone korreliert werden. Die bei Verwendung von PC oder P+Z bis 180 °C festgestellte Verringerung der Permeabilität tritt auf, obwohl die offene Porosität stetig zunimmt. Der Vergleich mit der Porengrößenverteilung zeigt, dass die geringer werdende Permeabilität mit einem Rückgang des Anteils großer Poren zugunsten kleiner Poren mit Durchmessern unter 0,1 μm einhergeht. Dies legt den Schluss nahe, dass diese sehr kleinen Poren keinen wesentlichen Beitrag zur Erhöhung der Permeabilität leisten, während der mit der Temperatur zunehmende Anteil von Poren > 0,4 μm, der bei Verwendung von Acrylat beobachtet wird, die Permeabilität fördert. Es bleibt aber festzuhalten, dass sich aus den vorliegenden Daten weder für die anfängliche niedrige Permeabilität des Acrylat-verflüssigten LCC, noch für den deutlichen Unterschied zwischen der Permeabilität des LCC-PC und LCC-P+Z bei Temperaturen über 250 °C ein schlüssiger Zusammenhang mit der offenen Porosität oder Porengrößenverteilung ergibt.

Kaltbiegezugfestigkeit (Abschnitt 5.8.3): Wenig überraschend sind die Unterschiede in der KBF-Entwicklung zwischen den mit verschiedenen Verflüssigern versetzten Feuerbetonen umso größer, je mehr Zement im Feuerbeton enthalten ist, dessen Hydratisierung durch die gewählten Verflüssiger beeinflusst werden kann. Für alle MCC wird eine Zunahme der Biegezugfestigkeit im Temperaturintervall 20 °C bis 130 °C beobachtet, die umso ausgeprägter ist, je niedriger der Ausgangswert nach 48 Stunden Hydratation ist. Diese Entwicklung wird auf die beschleunigte Hydratisierung von residualen Zementphasen und die Förderung des Kristallwachstums der Hydratphasen bei erhöhter Temperatur zurückgeführt (siehe Kapitel 5.8.1).

Beim verflüssigerfreien Referenzversatz verringert sich oberhalb von 185 °C die KBF wieder. In den Feuerbeton-Varietäten mit (P+Z) und PC erhöht sich die KBF dagegen bis zur Temperaturstufe 300 °C weiter, während sie sich bei Acrylat-verflüssigten Feuerbetonen bereits ab 130 °C wieder verringert. Bei Zugabe von **Fasern** ist die Festigkeitszunahmen ab 130 °C mit PC höher als im faserfreien Feuerbeton, dagegen mit (P+Z) geringer. Das Schmelzen der Fasern bei ca. 160 °C hat keinen erkennbaren Einfluss auf die KBF.

Die im Vergleich zur Vorbehandlung bei 130 °C bei 180 °C verringerte KBF korreliert mit der, in Kapitel 5.8.1 beschriebenen, verringerten Bildung von Gibbsit. Die oberhalb von 180 °C beobachtete Zunahmen der Biegezugfestigkeiten von PC- und P+Z-verflüssigten Feuerbetonen kann als Hinweis darauf gewertet werden, dass in diesen wenig permeablen Feuerbetonen auch bei hohen Temperaturen noch Wasser vorhanden ist (hydrothermale Bedingungen), was eine fortschreitende Hydratation ermöglicht. Im Umkehrschluss ist davon auszugehen, dass bei RC und Acrylat-verflüssigten Feuerbetonen kein Porenwasser mehr zur Verfügung steht, weil die beim Mischen zugegebene Wassermenge entweder nicht zur vollständigen Hydratation des Zementes ausreicht (RC) oder bereits vollständig getrocknet ist (MCC-A, LCC-A).

Die Röntgenbeugungsanalyse (Abschnitt 5.8.1) der Modell-Feuerbetone ohne Fasern zeigt, dass beim Aufheizen auf 130 °C, unabhängig vom Verflüssigersystem, eine signifikante Nachhydratation residualer Zementphasen und eine fortgesetzte Kristallisation von Hydratphasen erfolgt. Diese Nachhydratation tritt am stärksten im mit Acrylat verflüssigten Feuerbeton (MCC-A) auf, der nach dem Abbinden im Klimaschrank erst wenig hydratisiert ist. Der Hydratationsgrad bleibt aber niedriger als der der mit Natriumpolyphosphat und Zitronensäure oder Polycarboxylatether verflüssigten Feuerbetone. Das mit Polycarboxylatether verflüssigte System weist den höchsten Hydratationsgrad auf. Bei allen Verflüssigersystemen wird bei der Nachhydratation vorwiegend Gibbsit neben Katoit gebildet. Ferner wurden Spuren von Böhmit nachgewiesen.

Die Hydratation ist mit allen Verflüssigersystemen bei einer Vorbehandlungstemperatur von 130 °C weitgehend abgeschlossen, was darauf beruhen dürfte, dass das für die weitere Hydratation erforderliche Porenwasser ausgetrocknet wurde, wobei hier jede Varietät nochmals ein unterschiedliches Verhalten aufweist. So wird das Austrocknen der Proben maßgeblich von der Wegsamkeit im Porengefüge und der offenen Porosität geprägt, sodass im Falle der dichteren Varietäten, die mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigt wurden, selbst noch bis rund 250 °C ein Zuwachs an Hydratphasen erkennbar ist. Die zuletzt genannten Varietäten enthalten ab einer Vorbehandlungstemperatur von 180 °C auch signifikant mehr Böhmit, was wiederum ein Hinweis für die schlechte Wegsamkeit für das Porenwasser sein dürfte, da Böhmit hydrothermale Bildungsbedingungen benötigt und nur dann in Erscheinung tritt, wenn ein signifikanter Porendruck entstehen konnte.

Nach der Auslagerung im Klimaschrank bei 20 °C ist mit Hilfe der Röntgenbeugungsanalyse kein Einfluss der zugegebenen Fasern auf die Zusammensetzung der Mineralphasen der MC-Feuerbetone feststellbar. Im Temperaturbereich bis 380 °C scheinen die Fasern wenig zum Hydratationsgrad beizutragen. Vergleicht man die faserfreien Versätze mit den faserhaltigen, so wird innerhalb eines Verflüssigersystems kein signifikanter Unterschied über alle Temperaturstufen erkennbar.

Generell bestimmt der initiale Hydratationsgrad nach 48 Stunden bei 20 °C und 95 % relativer Luftfeuchtigkeit den Hydratationsgrad der einzelnen Temperaturstufen, da nicht ausgeschlossen werden kann, dass die Proben während des Aufheizens schneller austrocknen, als Wasser in Hydratphasen gebunden wird. Generell kann abgeleitet werden: Je höher der initiale Hydratationsgrad, desto mehr Hydratphasen bilden sich insgesamt, wobei bei den dichteren Feuerbetonen, die mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigt wurden, eine Zunahme der Hydratphasen bis etwa 250 °C zu verzeichnen ist, während im Falle der Verflüssigung mit Acrylat bereits bei 130 °C der maximale Hydratationsgrad erreicht ist.

Der Einfluss der verwendeten Verflüssiger auf die beim Abbinden gebildeten Hydratphasen wurde, außer an MCC-Feuerbetonen, zusätzlich auch mit RBA an Zementleimen ermittelt (Kapitel 5.1). Hierbei wurde die mineralogische Zusammensetzung des reinen Zementleims (Secar71) verglichen mit den mineralogischen Zusammensetzungen von modifizierten Zementleimen, die mit unterschiedlichen Konzentrationen der verwendeten Verflüssiger versetzt worden waren. Die Untersuchungen erfolgten nach dem Abbinden der Zementleime sowie nach ihrer Trocknung bei 50 °C und 100 °C. Hier stellte sich heraus, dass die in den Zementleimen gebildeten Phasen nicht unbedingt mit den Phasen übereinstimmen, die in den entsprechenden vollständigen MCC-Feuerbetonen gebildet wurden. Dabei wurde auch erkannt, dass die Hydratation der Zementklinkerphasen von allen verwendeten Verflüssigern gehemmt wird, so dass eine hohe Konzentration der Verflüssiger auch zu höheren Anteilen von residualen Zementklinkerphasen nach der Abbindephase von 48 h führt. Die hemmende Wirkung ist besonders deutlich ausgeprägt bei der Verwendung von Acrylat. In den Zementleimen sind nach dem Abbinden bei 20 °C lediglich CAH₁₀ und C₂AH₈ nachweisbar, deren Gehalte wie beschrieben stark von der Wirkung des verwendeten Verflüssigers abhängen. AH3 und C3AH6 treten nur in den Zementleimen auf, die nach der Auslagerung im Klimaschrank, bei 100 °C getrocknet wurden, aber nur, wenn bereits bei tieferen Temperaturen CAH₁₀ und C₂AH₈ gebildet wurden. In den verflüssigten Feuerbetonen wurde neben CAH₁₀ auch AH₃ und C₃AH₆ bereits nach dem Abbinden nachgewiesen, während C₂AH₈ in keinem der Feuerbetone nachgewiesen werden konnte. Die unterschiedliche Bildung von Zementhydratphasen in den Zementleimen und den Feuerbetonen belegt, dass die in einer Vielzahl von Studien an Zementleimen ermittelten Daten zur Hydratation von Calziumaluminatzement und zur Zersetzung der gebildeten Hydratphasen nicht uneingeschränkt auf vollständige Feuerbetone übertragbar sind.

Bei der **mikroskopischen Untersuchung (Kapitel 5.8.2)** wurde erkennbar, dass sich Größe und Habitus der Hydratphasen, je nach verwendetem Verflüssigersystem und dessen Auswirkungen auf die Mikrostruktur und die anfängliche Zusammensetzung der Mineralphasen, beim Aufheizen unterschiedlich entwickeln. Werden die Modellfeuerbetone auf 130 °C erwärmt, ist, für alle Variationen, im Vergleich zur Matrixstruktur nach Hydratation im Klimaschrank (siehe Kapitel 5.2.3), eine deutliche Rekristallisation der Matrix erkennbar. In diesem Temperaturintervall ist Porenwasser noch substanziell im Gefüge erhalten, was eine massive Nachhydratation zur Folge hat. Dies ist im Einklang mit den Ergebnissen der Phasenanalyse (RBA). Grundsätzlich wird auch im Mikrogefüge erkennbar,

dass mit Acrylat verflüssigte Feuerbetone signifikant weniger Hydratphasen bilden als die mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten Systeme. Nach dem Erhitzen auf 130 °C lässt die Feinkörnigkeit der erkennbaren Kristallite vermuten, dass zu wenig Wasser für die Nachhydratation zur Verfügung stand.

In den mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten MC-Feuerbetonen wird das Mikrogefüge, nach einer thermischen Vorbehandlung bei 130 °C, dominiert von rasenbildendem, kurzprismatischem, idiomorpher Gibbsit, begleitet von deutlich feiner kristallinen, wenig konturierten Kristallaggregaten mit tafeligem Kristallhabitus. Werden diese Feuerbetone einer Temperaturbehandlung bis 250 °C unterzogen, verlieren die zuvor beschriebenen, prismatischen Gibbsitkristalle ihre scharfen Kanten, was darauf hindeutet, dass Gibbsit bei diesen Temperaturen nicht mehr stabil ist. Stattdessen bilden sich tafelige Kristalle, die wahrscheinlich als Böhmit anzusprechen sind. Während im Fall des mit Phosphat und Zitronensäure verflüssigten Feuerbetons neben den tafeligen auch prismatische Kristalle erkannt werden, ist im Fall des mit Polycarboxylatether verflüssigten Systems kein Gibbsit mehr erkennbar.

Es ist zwar grundsätzlich richtig und nachvollziehbar, dass Gibbsit unter hydrothermalen Bedingungen Wasser abgibt und Böhmit entsteht, jedoch ist im vorliegenden Fall eher davon auszugehen, dass sich der Böhmit während des raschen Aufheizens mit 250 K pro Stunde anstelle des Gibbsit bildet. Die Mikrogefüge weisen idiomorphe, tafelförmige Böhmit-Kristalle auf, sodass eine Zersetzungsreaktion hier eher unwahrscheinlich ist. Die sich durch die geringe Porosität der mit Phosphat und Zitronensäure oder Polycarboxylatether verflüssigten Feuerbetone einstellenden hydrothermalen Bedingungen im Mikrogefüge stabilisieren somit den Böhmit auf Kosten des Gibbsits.

Radarmessungen (Kapitel 5.7): Radarstrahlung erzeugt ein elektromagnetisches Mikrowellenfeld, das sensibel auf Änderungen der Feuchtigkeit reagiert. Während des Abbinde-Prozesses von Feuerbeton wird Wasser in die kristalline Struktur der Hydratphasen eingebaut. Bei der Dehydratation wird dieses Wasser wieder freigesetzt. Die Analyse der Auswirkungen auf das Mikrowellenfeld war Basis für die Entwicklung dieser Prüfmethode zur Detektion des Zerfalls von Hydratphasen. Dabei wurden Feuerbetone nach dem Abbinden, ohne vorherige Trocknung, untersucht, um den Vergleich mit den ebenfalls an nicht getrockneten Feuerbetonen durchgeführten MMH-Untersuchungen zu ermöglichen. Dabei zeigte sich eine hohe Explosionsneigung bei der Radaruntersuchung, die zum einen im größeren Probenformat und zum anderen in der einseitigen Aufheizung des noch feuchten Feuerbetons im verwendeten Versuchssaufbau begründet ist.

Das Radarsystem arbeitet im Reflektionsverfahren. Durch die Bildung eines Trocknungsspiegels, wird vermutlich ein Großteil der Radarstrahlung am oberen Teil der Probe bereits durch das freie Wasser reflektiert und das Radar-Signal gedämpft. Die Durchdringung der Probe mit dem Messsignal wird somit herabgesetzt und die Volumenauflösung der Messung verschlechtert. Feuerbetone mit

höherem Wassergehalt (RC und MCC-A) zeigen in der Radarmessung eine ungenügende Reproduzierbarkeit. Es ist anzunehmen, dass der höhere Wassergehalt zu einer stärkeren Dämpfung des Radarsignals führt und damit die Messqualität herabsetzt.

Die Radarmethode detektiert den Trocknungsfortschritt im gesamten Probevolumen, ermöglicht aber keine Zuordnung von genauen Zersetzungstemperaturen und kann keine lokalen Änderungen im Material bestimmen. Es kommt zu einer Überlagerung der unterschiedlichen temperaturabhängigen Zersetzungsprozesse, was eine genaue Beurteilung der Trocknungs- und Dehydratations-Fortschrittes erschwert.

Durch die einseitige Aufheizung der Proben im Radarversuchstandes schreitet die Trocknung im unteren Teil der Probe schneller voran als im oberen, der Wärmequellen abgewandten, Teil der Probe. Da Wasser im flüssigen Aggregatzustand die Radarstrahlung stark beeinflusst, kann die Radar-Messung erst nach einer vollständigen Überführung des Porenwassers in die Dampfphase im Prüfkörper eine signifikante Signaländerung durch das aufgrund von Phasenumwandlungen freigesetzte Wasser detektieren.

Gerade aufgrund der Beobachtung, dass flüssiges Wasser das Radarsignal dämpft, während es von Wasserdampf nicht beeinträchtigt wird, kann mit der Radarmethode der Zeitpunkt bestimmt werden, an dem kein flüssiges Wasser mehr vorliegt und der entstandene Wasserdampf zur Oberfläche des Feuerbetons diffundieren kann.

Während der Versuche zeigte sich, dass beim angewandten Reflektionsverfahren minimale Änderungen in der Anordnung von Messkopf, Probe und Versuchstand zu einer diffusen Reflektion des Signals führen. In seiner bestehenden Form ist der Radarversuchstand nicht ausreichend reproduzierbar für eine genaue Messung des Trocknungsfortschrittes von Feuerbetonen. Die erzielten Ergebnisse bestätigen aber das grundsätzliche Potential der Methode zum Monitoring des Trocknungsfortschrittes und der Dehydrierung, Bisher können aber die unterschiedlichen Bindungsformen (Porenwasser, Hydratphasen) mit der Radarmethode auf Grund der beschriebene Signalüberlagerung nicht ausreichend genau voneinander unterschieden werden.

6.3. Bestimmung der Zersetzungsgeschwindigkeit der Hydratphasen mit LFA

Ziel der Untersuchungen mit LFA war es, den zeitlichen Verlauf der Zersetzung von Hydratphasen über die damit einhergehende Verminderung der TLF zu erkennen und daraus die Zersetzungskinetik der Hydratphasen abzuleiten. Die Verminderung der TLF ist eine Folge der Zunahme der Porosität aufgrund der Entwässerung. Sowohl die Freisetzung von Porenwasser hinterlässt Porosität als auch die thermische Zersetzung von Hydratphasen.

Mit LFA wurde klar erkannt, dass sich die Temperaturleitfähigkeit (TLF) der Modell-Feuerbetone im

Temperaturintervall bis 300 °C im Zuge ihrer Entwässerung während der ersten Aufheizung vermindert (Bild 64, Bild 66, Bild 67). Im Bereich der intensiven MMH-Signale (siehe Kapitel 6.4), die im Zusammenhang stehen mit Entwässerungsreaktionen der Feuerbetone, sind in den LFA-Ergebnissen jedoch keine stufenförmigen Verminderungen der TLF zu erkennen. Bei LFA ist ebenfalls kein Einfluss der Prüfdauer auf die bei konstanter Temperatur ermittelte TLF erkennbar. Somit kann die Zersetzungsgeschwindigkeit von Hydratphasen nicht systematisch ermittelt werden. Über die durchgeführten Untersuchungen wurde jedoch klar, dass sich die Hydratphasen bei Erreichen der Grenze ihrer thermischen Beständigkeit sehr schnell zersetzen. Die notwendigen Zeitabstände zwischen einzelnen LFA-Messungen sind methodenbedingt zu lang, um die resultierende zeitliche Veränderung der TLF untersuchen zu können. Zudem überlagert sich der Effekt der Abgabe des Porenwassers auf die TLF, denn anhand der Feststellungen mit MMH kann im relevanten Temperaturbereich der thermischen Zersetzung etlicher Hydratphasen bis mindestens 260 °C auch noch Porenwasser den Prüfkörper verlassen und Einfluss nehmen auf die TLF.

Die LFA-Messungen waren dennoch hilfreich zum Verständnis des Entwässerungsverhaltens der Feuerbetone, denn sie haben gezeigt, dass die thermische Zersetzung der Hydratphasen im LFA-Prüfkörper mit dem Erreichen ihrer Zersetzungstemperaturen schnell abläuft. Das bedeutet gleichzeitig, dass das an die betroffene Hydratphase gebundene Wasser in einem kleinen Temperatur-Zeit-Intervall frei wird, je nach vorliegendem Porendruck als Dampf oder Wasser.

Das mit LFA erkannte Temperaturintervall, in dem die Entwässerung des Prüfkörpers stattfindet, endet bei ca. 300 °C. Das mit MMH-TG festgestellte Temperaturintervall der Entwässerung endet hingegen erst bei ca. 550 °C. Dies ist auch den Einfluss der Probengeometrie bzw. der Probengröße auf das Entwässerungsverhalten zurückzuführen. Die LFA-Prüfkörper sind klein im Vergleich zu den bei MMH-TG verwendeten Prüfkörpern und entwässern entsprechend schneller, zumal innerhalb der isothermen Haltezeiten, die für die Serien von LFA-Messungen jeweils notwendig sind. Alternativ wären Effekte der Entwässerungsreaktionen oberhalb 300 °C nur von so geringem Einfluss auf die mit LFA gemessene Temperaturleitfähigkeit, dass sie mit dieser Methode nicht erkannt werden können.

LFA zeigt also den grundsätzlichen Effekt der Entwässerung auf die TLF der Feuerbetone, kann aber nicht in betriebsrelevanter Weise systematisch zur Untersuchung des Entwässerungsverhaltens angewendet werden. Offenbar ermöglichen die verwendeten LFA-Prüfkörper nicht in ausreichender Weise die Ausbildung hydrothermaler Bedingungen während der Messung, deren Auswirkung auf die thermische Stabilität der Zementhydratphasen somit auch nicht erkannt werden kann, so wie es mit MMH-TG möglich ist.

6.4. Untersuchung der Zersetzung der Hydratphasen mit MMH-TG

Untersuchungen an dem Referenzbeton RC dienten dazu, die in den MMH-Kurven (effektive Temperaturleitfähigkeit in Abhängigkeit von der Temperatur in der Probenmitte) auftretenden Signale konkreten Phasenumwandlungen zuzuordnen und diese mit den in begleitend durchgeführten Thermogravimetrischen Messungen auftretenden Gewichtsänderungen zu korrelieren. Die an dem RC durchgeführten MMH- und TG-Untersuchungen ergaben reproduzierbare Ergebnisse. Während mit MMH anhand von peak- oder stufenförmigen Signalen im Verlauf der MMH-Kurve (effektive Temperaturleitfähigkeit in Abhängigkeit von der Probentemperatur) die Temperaturen von Phasenumwandlungen detektiert werden, die im Zuge der Entwässerung der Feuerbetone stattfinden, wird mit TG das Ausgasen des Wasserdampfs an der Oberfläche desselben Prüfkörpers erfasst. Dabei korrespondieren die Temperaturintervalle der TG-Kurven, in denen eine beschleunigte Gewichtsabnahme stattfindet, mit den intensiven Signalen in den MMH-Kurven. Dies bestätigt, dass die Signale in den MMH-Kurven mit Entwässerungsreaktionen im Zusammenhang stehen. Der RC zeigt besonders intensive MMH-Signale aufgrund seines hohen Zementanteils von 20 Ma.-% und den entsprechend hohen Gehalten an Zementhydratphasen.

In dem RC sowie in den untersuchten MCC, LCC und ULCC wurden insgesamt sieben MMH-Signale registriert (S1 bis S7), die durch ihr Auftreten oder ihre Intensität in den MMH-Kurven "Muster" bilden, die für verschiedene Feuerbetone jeweils typisch sind. Der Abgleich mit den begleitend durchgeführten TG-Untersuchungen zeigt, dass die Signale S1 bis S7 die wichtigsten Phasenübergänge im Zuge der Entwässerung der hier betrachteten Feuerbetone markieren.

Die Signale S1 bis S7 mussten hinsichtlich der zugrunde liegenden Phasenübergänge interpretiert werden. Ein situ Verfahren zur Phasenanalyse steht dazu nicht zur Verfügung. Der Nachteil alternativer thermoanalytischer Verfahren und der Phasenanalyse mit Röntgenbeugung besteht darin, dass die dafür verwendeten Proben sehr klein sind und somit nicht repräsentativ für die Feuerbetone. Außerdem stehen diese Methoden nicht zur Messung unter hydrothermalen Bedingungen zur Verfügung. Daher erfolgte die Zuordnung der MMH-Signale im Wesentlichen auf Basis von Literaturangaben zur thermischen Stabilität der Hydratphasen (Kapitel **Fehler! Verweisquelle konnte nicht gefunden werden.**), Plausibilität sowie den Erfahrungen und Ergebnissen aus dem IGF-Vorhaben 19855 N [SIM20].

Indirekte Begleituntersuchungen (RBA, REM) erfolgten an Proben, die bei ausgewählten Temperaturen vorbehandelt wurden. Diese lagen jeweils bei etwas niedrigerer und etwas höherer Temperatur als die Temperatur des zu interpretierenden MMH-Signals. Jedoch mussten die anschließenden Begleituntersuchungen wiederum nach Abkühlung und Druckentlastung erfolgen und die Phasenanalyse (RBA) zudem nach der hochenergetischen Feinzerkleinerung. Dies birgt das Risiko, dass die Proben für die Begleitanalysen nicht mehr den Phasenbestand aufwiesen, wie er bei hydrothermalen Bedingungen während der MMH-Messungen vorlag.

Die sehr gute Reproduzierbarkeit der Signalmuster in den MMH-Kurven verschiedener Feuerbetone erlaubt es dennoch, signifikante Rückschlüsse auf ihr Entwässerungsverhalten zu ziehen. In Zukunft ist absehbar, dass die konkrete Zuordnung der MMH-Signale analytisch besser begleitet werden kann, etwa durch die Weiterentwicklung der Raman-Spektroskopie für Untersuchungen unter hydrothermalen Bedingungen oder in situ Röntgenverfahren in Hydrothermalzellen. Die hier durchgeführte Interpretation der MMH-Signale kann dann rückwirkend verifiziert werden.

6.4.1. Zuordnung der Signale S1 – S7 zu konkreten Entwässerungsreaktionen

S1: Exotherme Reaktion mit verschiedenen möglichen Ursachen: 1. Nachhydratation residualer Zementphasen (wahrscheinliche Ursache) oder 2. Umwandlung metastabiler CAH-Phasen in Katoit+Gibbsit+H₂O (weniger wahrscheinlich, aber nicht auszuschließen) oder 3. Kristallisation von Gibbsit (AH₃) aus AH_x-Gel (weniger wahrscheinlich, aber nicht auszuschließen).

Wie in Kapitel 5.4 beschrieben, ist Nachhydratation von reliktischen Zementklinkerphasen (CA/CA₂) die plausibelste Ursache von Signal S1. In den MMH-Untersuchungen an Siebfraktionen zerkleinerter Feuerbetone, in denen die Matrix und somit auch die Hydratphasen angereichert vorliegen, wurde kein S1 beobachtet. In diesen Proben stand für eine Nachhydratation kein Porenwasser zur Verfügung. Im Fall der Ursachen 2 oder 3 als Ursache für S1 hätte auch in den Schüttungen ein intensives S1 auftreten müssen.

Die Intensität des Signals S1 erhöht sich deutlich mit dem Zementanteil im Feuerbeton. Besonders intensive Signale S1 wurden daher für den RC und den MCC festgestellt. Zusätzlich beeinflusst auch der verwendete Verflüssiger die Intensität von S1, in den MCC mit der eindeutigen Tendenz der Intensitäten PC > (P+Z) >> A. Auch das Temperaturintervall von S1 wird vom Verflüssiger beeinflusst. Mit PC liegt das Maximum bei ca. 90 °C, mit A bei ca. 110 °C und mit P+Z bei ca. 120 °C. Bei den LCC fällt S1 weitaus geringer intensiv aus als bei den MCC und der Einfluss des Verflüssigers ist hier nicht mehr eindeutig. In Kombination mit einem höheren Gehalt an Zement (MCC) wird der Einfluss der Verflüssiger auf S1 somit bedeutsamer. Bei den ULCC konnten nur die faserhaltigen Modifikationen mit MMH untersucht werden. Hier tritt S1 nur mit PC auf und in geringer Intensität. PC wirkt schon beim Abbinden weniger verzögernd als P+Z und insbesondere A und der Effekt (geringe Verzögerung) besteht offenbar auch bei höherer Temperatur.

RBA-Untersuchungen ergaben, dass in allen drei MCC eine Nachhydratation stattgefunden hat. Die Intensität der mir RBA nachgewiesenen Nachhydratation korreliert allerdings nicht mit den Intensitäten des Signals S1 in MMH. S1 müsste anhand RBA bei MCC-A am intensivsten sein, weil hier die mit RBA erkannte Nachhydratation besonders deutlich ist. Allerdings werden die Ergebnisse der RBA-Untersuchungen (Gehalte in Ma.-%) über Rietveld normiert, so dass die mit RBA festgestellten Veränderungen nicht direkt mit den Intensitäten der MMH-Signale verglichen werden können.

Auch die mit PC und P+Z verflüssigten MCC zeigen nach 130 °C mit RBA einen Zuwachs an Hydratphasen im Vergleich zu ihrem Zustand nach dem Abbinden, wo sie schon etwas C₃AH₆, Gibbsit und CAH₁₀ enthalten. Bei einer Nachhydratation oberhalb 100 °C würde Katoit (C₃AH₆) und AH₃ gebildet werden anstelle von CAH₁₀ oder C₂AH₈, den typischen CAH-Phasen beim Abbinden bei Raumtemperatur. Letztere geben ihr Kristallwasser bei niedrigeren Temperaturen wieder ab als C₃AH₆ und AH₃. Eine Nachhydratation wäre also aus dieser Sicht eher nachteilig in Bezug auf eine Entwässerung der Feuerbetone bei möglichst niedrigen Temperaturen. Allerdings würde eine Nachhydratation die Menge an Porenwasser vermindern, so dass die hydrothermale Phase der Aufheizung schon bei niedrigeren Temperaturen beendet sein könnte. Dann könnte auch die thermische Zersetzung von Aluminiumhydraten (Gibbsit statt Böhmit) sowie C₃AH₆ in gemäßigten Temperaturbereichen (< ~300 °C) stattfinden. Die Auswirkung der Nachhydratation auf das Aufheizverhalten hängt also davon ab, welcher Porendruck durch die Wiederfreisetzung des bei einer Nachhydratation gebundenen Wassers entsteht. Somit kann das Wissen über den Umfang einer Nachhydratation, angezeigt über die Signalintensität von S1, für das Aufheizverhalten der Feuerbetone sehr bedeutsam sein.

S2: Thermische Zersetzung von CAH₁₀

Ein stufenförmiges Signal bei ~135 °C im Verlauf der MMH-Kurve des RC wird, wie schon im IGF-Vorhaben 19855 N [SIM20], mit der thermischen Zersetzung von CAH₁₀ korreliert. Für eine alternative Interpretation gibt es keine konkreten Anhaltspunkte. Aufgrund der geringen Intensität des Signals und der fehlenden Korrespondenz zur TG-Kurve wird hier der direkte Einfluss in Bezug auf das Entwässerungsverhalten als gering eingestuft. Das etwaig durch S2 freiwerdende H₂O kann bei den herrschenden Druckverhältnissen zunächst als Wasser vorliegen und so die Menge an vorliegendem Porenwasser erhöhen, welches dann im weiteren Verlauf der Aufheizung mehr Bedeutung gewinnt bezüglich des Aufheizverhaltens. In den verflüssigten Feuerbetonen tritt S2 jedoch kaum in Erscheinung. In den zerkleinerten Feuerbetonen (Siebfraktion 0-1 mm, Abschnitt 5.5) tritt S2 deutlicher in Erscheinung, vermutlich weil in den Siebfraktionen die Matrix angereichert vorliegt.

S3: Thermische Zersetzung von C₂AH₈

S3 tritt in einem engen Temperaturbereich um 170 °C in Form eines Signals mit Minimum in den MMH-Kurven auf. Das Signal wurde auf der Basis von Literaturangaben mit der thermischen Zersetzung von C₂AH₈ interpretiert. In den zementreichen Feuerbetonen (RC, MCC) ist die Intensität von S3 höher als in den LCC und ULCC F. Innerhalb der Gruppen mit gleichem Zementanteil ist die Intensität von S3 am höchsten mit PC als Verflüssiger. In den mit Acrylat verflüssigten Feuerbetonen fehlt S3. Dies korreliert mit der über RBA festgestellten Eigenschaft von Acrylat, die Kristallisation von CAH-Phasen zu verzögern.

S3 findet in einem Temperaturbereich statt, in dem noch hydrothermal siedendes Porenwasser vorhanden sein kann (siehe Beschreibung zu S4). Daher könnte das bei der Zersetzung von C₂AH₈

freiwerdende H₂O auch zunächst als zusätzliches Porenwasser auftreten. Es kann auch zu Überlagerungen von S3 mit S4 kommen, so dass in diesen Fällen eine eindeutige Unterscheidung (S3 oder S4 oder beide) möglich ist.

Nicht in Übereinstimmung mit der Zuordnung von S3 zur thermischen Zersetzung von C₂AH₈ liegen die Ergebnisse der Röntgenbeugungsanalyse. In den MCC-Feuerbetonen konnte mit RBA kein C₂AH₈ nachgewiesen werden (Kapitel 5.8.1). Wenn die Zuordnung von S3 zur thermischen Zersetzung von C₂AH₈ aber stimmt, dann bedeutet das für die RBA, dass das metastabile C₂AH₈ bei der Probenpräparation (hochenergetische Feinzerkleinerung) zerstört wurde oder dass C₂AH₈ aufgrund schlecht ausgebildeter Kristallinität mit der angewendeten Röntgenbeugungsanalytik nicht nachweisbar ist.

In den zerkleinerten Feuerbetonen (MMH-Untersuchungen an Schüttungen der Korngrößenfraktion 0-1 mm, Kapitel 5.5) ist S3, wie auch schon S2, deutlich intensiver ausgeprägt als in den intakten Feuerbetonen. Es liegt nahe, dass hier die hohe Intensität des Signals auf eine Anreicherung der Bindungsbestandteile in der Siebfraktion 0-1 mm zurückzuführen ist. Die Temperatur des Minimums von S3 liegt hier jedoch weiterhin bei ca. 170 °C, was bedeutet, dass die thermische Zersetzung von C₂AH₈ nicht nennenswert vom Porendruck beeinflusst wird. Außerdem ist der Einfluss des verwendeten Verflüssigers auf S3 in den Schüttungen eher gering. S3 wurde auch für die Schüttung des MCC-A festgestellt, im Gegensatz zum intakten Feuerbeton.

S4: Absieden des letzten vorhandenen Porenwassers in der Mitte des Prüfkörpers

Ab 100 °C beginnt das noch vorhandene Porenwasser in den Feuerbetonen zu sieden (endotherme Reaktion), was dazu führt, dass die MMH-Kurven einen fallenden Verlauf einschlagen. Diese Verminderung der effektiven Temperaturleitfähigkeit überlagert sich mit dem Effekt des kristallinen Anteils der Modell-Feuerbetone (Korund), der ebenfalls eine Verminderung der TLF mit steigender Temperatur bewirkt. Der beim Sieden von Porenwasser entstehende Dampf kann aufgrund der allgemein geringen Permeabilität der untersuchten Feuerbetone nicht direkt entweichen. Er baut daher einen Porendruck auf, der die Siedetemperatur des verbleibenden Porenwassers erhöht. Somit entstehen im Inneren des Feuerbetons hydrothermale Bedingungen, während er nach außen hin austrocknet. Mit ansteigender Temperatur erhöht sich der Wasserdampfdruck in den Poren entlang der Dampfdruckkurve von Wasser, die nach der Antoine-Gleichung berechnet werden kann (Bild 4). Wenn schließlich auch in der Mitte des Prüfkörpers alles Porenwasser abgesiedet ist, dann erhöht sich mit der Beendigung des endothermen Prozesses die Aufheizrate im Prüfkörper sprunghaft, was zu dem beobachteten, stufenförmigen Anstieg der effektiven Temperaturleitfähigkeit (Signal S4) führt. Parallel durchgeführte TG-Untersuchungen zeigen eine verringerte Gewichtsabnahme etwa ab der Temperatur von S4. Mit der Beendigung der Siedephase ist ein Abflachen der TG-Kurve zu erwarten.

S5: Thermische Zersetzung von Gibbsit (AH₃), ~270 bis ~300 °C

Das Signal S5 wird interpretiert mit der thermischen Zersetzung von Gibbsit (AH₃). S5 wurde unter Berücksichtigung von Ergebnissen aus der Literatur (Kapitel **Fehler! Verweisquelle konnte nicht g efunden werden.**) in der gleichen Weise zugeordnet. Dabei wurde die Abhängigkeit des Auftretens von S5 vom Porendruck festgestellt, der sich während der MMH/TG-Prüfungen im Prüfkörper aufbaut. Ein hoher Wasserdampfdruck in den Poren bewirkt, dass Gibbsit unter hydrothermalen Bedingungen in Böhmit (AH) umwandelt, so dass in diesen Fällen S5 ausbleibt und dafür S7 (thermische Zersetzung von Böhmit) bei 500-550 °C in Erscheinung tritt. Das bei der Zersetzung von C₂AH₈ (S3, ~170 °C) entstehende Aluminiumhydroxid könnte unter hydrothermalen Bedingungen auch direkt als Böhmit kristallisieren. Bester Indikator für die Existenz hydrothermaler Bedingungen ist die Temperatur von S4. Liegt S4 im Temperaturbereich deutlich unter 200 °C, dann lagen keine besonders hohen hydrothermale Drucke vor, Gibbsit wandelt nicht in Böhmit um und entsprechend kann S5 in den MMH-Ergebnissen auftreten.

S6: Thermische Zersetzung von Katoit C₃AH₆, ~290 – 360 °C

Basierend auf Abgleich mit der Literatur (Kapitel **Fehler! Verweisquelle konnte nicht gefunden w erden.**) wird das Signal S6 mit der thermischen Zersetzung von Katoit (C₃AH₆) korreliert. In Abwesenheit von S5 bzw. hohen Temperaturen von S4 tritt S6 systematisch bei relativ hohen Temperaturen (~350 bis ~365 °C) auf, gefolgt von einem deutlichen Signal S7. Andernfalls liegt das Minimum von S6 zwischen 290 bis 350 °C. C₃AH₆ scheint somit über einen hohen Wasserdampfdruck zu höheren Temperaturen stabilisiert zu werden. Auch in früheren MMH-Untersuchungen IGF 19855 N hat sich die thermische Zersetzung von C₃AH₆ als deutlich druckabhängig erwiesen.

S6 tritt in den MMH-Kurven des RC sehr reproduzierbar auf in Form eines ausgeprägten Signals mit einem Minimum bei ca. 360 °C. In den MMH-Kurven aller drei MCC-Feuerbetone ist S6 enthalten, wobei sich die Intensitäten deutlich unterscheiden mit MCC-P+Z > MCC-A > MCC-PC. Die Temperatur des Minimums ist bei MCC-P+Z mit 355 °C am höchsten, die beiden anderen liegen zwischen 325 und 330 °C.

Bei den LCC-P+Z und -PC sind die Intensitäten von S6 sehr hoch, mit A etwas geringer und hier auch bei niedrigerer Temperatur, was wieder ein Hinweis auf niedrigere Porendrucke in LCC-A ist.

Bei den ULCC, die nur in ihren Modifikationen mit Zusatz an PP-Fasern mit MMH und TG untersucht werden konnten, tritt S6 bei den Feuerbetonen mit PC und mit geringerer Intensität mit P+Z auf.

S7: Thermische Zersetzung von Böhmit AH, ~500 bis ~550 °C

S7 erscheint als ein breites Signal mit einem Minimum im Temperaturbereich zwischen etwa 500 – 550 °C. Die thermische Zersetzung von AH Böhmit ist der einzige plausible Phasenübergang in diesem Temperaturbereich.

In den MMH-Messungen an den drei RC-Prüfkörpern erscheint das Signal S7 reproduzierbar bei 550 °C, gefolgt von dem beschriebenen zweiten Minimum bei 590 °C. Wie schon beschrieben, tritt S7 in Erscheinung, wenn sich in den untersuchten Feuerbetonen hohe Porendampfdrucke aufgebaut haben. Innerhalb der MCC-Reihe konnte sich Böhmit in den Feuerbetonen mit P+Z und PC bilden, mit A jedoch nicht. Auf die Zusammenhänge zwischen dem Porendruck (hydrothermale Bedingungen, S4) und dem Auftreten von S5 und S7 sowie der Temperatur des Minimums von S6 wurde bereits in den vorhergehenden Beschreibungen zu den einzelnen Signalen eingegangen.

Bei den LCC und ULCC-Feuerbetonen sind es ebenfalls die Modifikationen mit A, in denen das Signal S7 nicht auftritt.

6.4.2. Korrelation der MMH-Signale mit den Ergebnissen der RBA-Untersuchungen an den MCC mit thermischer Vorbehandlung entsprechend Tabelle 12

Die MMH-Ergebnisse (Signale S1 bis S7) verweisen auf diskrete Phasenumwandlungen, die jeweils in einem begrenzten Temperaturintervall ablaufen. Lediglich das für RBA unsichtbare Signal S4 (Ende der Siedephase) verläuft über ein breites Temperaturintervall von 100 K bis zu dem stufenförmigen Anstieg der effektiven TLF, der das Ende der Siedephase markiert. Die Ergebnisse der RBA-Untersuchungen mit Rietveld-Auswertung deuten jedoch darauf, dass einige Hydratphasen nicht in einem engen Temperaturbereich von Umwandlungen betroffen sind, sondern dass Phasenumwandlungen bei weiter ansteigender Temperatur fortlaufen können. Die Nachhydratation, die für das Signal S1 in den MMH-Kurven bei 90 bis ~120 °C verantwortlich erscheint, verläuft nach den RBA-Ergebnissen zwar im Wesentlichen ebenfalls im Temperaturbereich zwischen 20-130 °C, mit den Verflüssigern P+Z und PC aber weiter bis ca. 250 °C. Anhand RBA erhöht sich der Anteil hydratisierter Phasen bis 250 °C gegenüber den Anteilen von CA und CA₂.

Von den CAH-Phasen tritt anhand der RBA-Untersuchungen CAH₁₀ im Temperaturintervall zwischen 20 und 130 °C auf. Das entsprechende Signal S2 in den MMH-Kurven tritt jedoch in den intakten Feuerbetonen höchstens untergeordnet auf. Lediglich in den Schüttungen 0-1 mm, in denen die Matrix der Feuerbetone angereichert vorliegt, tritt S2 regelmäßig in Erscheinung. Bei höheren Temperaturen erscheinen zwar noch Spuren von CAH₁₀ in den Rietveld-Analysen, was jedoch eher der analytischen Vorgehensweise bei der Rietveld-Auswertung zuzuschreiben ist. Zur besseren Vergleichbarkeit der Ergebnisse erfolgte die Rietveld-Auswertung immer auf Basis des gleichen, vollständigen Satzes von Referenzspektren, unabhängig davon, ob einzelne Phasen in der Röntgenbeugungsanalyse der jeweiligen Probe erkennbar sind oder nicht. Daher werden offenbar auch Phasen berechnet, die eigentlich gar nicht auftreten dürfen (z.B. CAH₁₀ bei Temperaturen weit oberhalb 1000 °C). C₂AH₈ wurde mit RBA nicht erkannt, obwohl das entsprechende MMH-Signal für die thermische Zersetzung von C₂AH₈ (S3) regelmäßig in den Feuerbetonen festgestellt wurde.

Katoit (C₃AH₆) ist nach thermischer Vorbehandlung oberhalb 300 °C mit RBA nicht mehr nachweisbar. In den MMH-Kurven wird jedoch die thermische Zersetzung von Katoit bei 300-360 °C festgestellt, in den Schüttungen dagegen bei ~290 °C.

Komplex ist nach den RBA-Ergebnissen insbesondere das Verhalten von Gibbsit, der auch noch nach Vorbehandlung bei 380 °C erkannt wurde. Bei MCC P+Z (F) beispielsweise erhöht sich der Anteil an Gibbsit nach 380 °C im Vergleich zu 300 °C. In den MMH-Kurven tritt das Signal S5 (thermische Zersetzung von Gibbsit) bei Temperaturen zwischen etwa 260-290 °C auf. Grundsätzlich ist denkbar, dass Gibbsit als Zersetzungsprodukt verschiedener CAH-Phasen in mehreren Generationen gebildet werden könnte, wobei unter höheren Drucken während hydrothermaler Bedingungen Böhmit statt Gibbsit gebildet wird.

Die Korrelation der Ergebnisse von MMH mit RBA ist also nicht eindeutig, die Ergebnisse ergänzen sich vielmehr. Es ist nicht auszuschließen, dass die mit RBA untersuchten Proben der Feuerbetone nach definierten Vorbehandlungstemperaturen (Tabelle 12) nicht den Reaktionsablauf widerspiegeln, der in den MMH-Prüfkörpern während ihrer kontinuierlichen Aufheizung stattgefunden hat. Rückreaktionen bei der Abkühlung, der parallel stattfindenden Druckentlastung und Einflüsse der hochenergetischen Feinzerkleinerung zur Vorbereitung der RBA-Untersuchungen sind plausible Faktoren, die zur Folge haben können, dass die mit RBA ermittelten Ergebnisse nicht den jeweiligen Mineralbestand repräsentieren, der bei den verschiedenen Vorbehandlungstemperaturen (Tabelle 12) bzw. dem entsprechenden MMH-Prüfkörper tatsächlich vorgelegen hat. Somit relativiert sich die Möglichkeit zu Deutung der MMH-Signale über RBA nach gezielten Vorbränden.

Grundsätzlich zeigte sich, dass die Röntgenpulverdiffraktometrie an Feuerbetonen nach bestimmten Vorbehandlungstemperaturen nur bei den zementreichen Feuerbetonen zu auswertbaren Spektren führt. Schon bei den LCC sind die Röntgenreflexe der Hydratphasen von geringer Intensität, so dass ihre Auswertung über Rietveld-Analyse kaum möglich ist. So besteht lediglich die Möglichkeit, Untersuchungen an zementreichen Feuerbetonen durchzuführen und die Ergebnisse auf Feuerbetone mit niedrigeren Zementgehalten zu übertragen. Wie jedoch die unterschiedlichen Signalmuster der MMH-Kurven für die mit identischen Verflüssigern hergestellten MC- und LC-Feuerbetonen verdeutlichen, ist bei einer solchen Übertragung Vorsicht geboten und die Probleme der Abkühlung, Druckentlastung und Feinzerkleinerung bleiben grundsätzlich bestehen

6.4.3. Einfluss von Verflüssigern auf die Zersetzung von Zementhydratphasen

Die Signale in den MMH-Kurven der zerkleinerten Feuerbetone (Schüttungen der Fraktion 0-1 mm) unterscheiden sich innerhalb ihrer Gruppe (MCC, LCC, ULCC) viel weniger als die MMH-Kurven der entsprechenden intakten (d.h. nicht zerkleinerten) Feuerbetone. Dies lässt darauf schließen, dass die verwendeten Verflüssiger nur einen geringen direkten Einfluss haben auf die thermische Stabilität der gebildeten Zementhydratphasen. Die morphologische Ausbildung der Hydratphasen wird entweder

nicht entscheidend vom verwendeten Verflüssiger beeinflusst oder die Morphologie hat keinen großen Einfluss auf das Zersetzungsverhalten der Zementhydratphasen-Kristalle. Die festgestellten Unterschiede im Auftreten der MMH-Signale in den Schüttungen sind plausibler erklärbar als eine Folge der beim Abbinden gebildeten Hydratphasen. So wird der verzögernde Einfluss der Verflüssiger auf die beim Abbinden gebildeten Hydratphasen (Art und Menge) in den MMH-Ergebnissen deutlicher erkennbar als ein Einfluss der morphologischen Gestalt der gebildeten Hydratkristalle auf ihr Entwässerungsverhalten.

Der große Unterschied der MMH-Ergebnisse (Temperaturen und Auftreten der Signale S1-S7 mit Ausnahme S3) der Schüttungen im Vergleich zu den dazugehörigen intakten Feuerbetonen zeigt, dass der in realen Feuerbetonen beim Aufheizen entstehende Porendruck einen entscheidenden Einfluss hat auf die thermische Stabilität spezieller Hydratphasen, insbesondere bei den Aluminiumhydratphasen (Gibbsit AH₃ und Böhmit AH) und Katoit C₃AH₆. Insgesamt betrachtet führt die Druckstabilisierung von Hydratphasen dazu, dass die vollständige Entwässerung der Feuerbetone erst bei deutlich höherer Temperatur abgeschlossen ist (Böhmit bei 550 °C), als es bei den Schüttungen der Fall ist (Katoit bei ca. 300 °C). Letztlich ist aber auch die Druckstabilisierung von flüssigem Porenwasser bis weit in den Bereich hydrothermaler Bedingungen im Porenraum der Feuerbetone von besonderer Relevanz in Bezug auf das Aufheizverhalten und die Gefahr von explosivem Spalling.

Die verwendeten Verflüssiger, auch in Verbindung mit der jeweils notwendigerweise angepassten Menge an Anmachwasser, beeinflussen das Porengefüge der realen Feuerbetone (Kapitel 5.8.4). Der während der ersten Aufheizung entstehende Wasserdampfdruck in den Poren wird dadurch entscheidend beeinflusst und in Folge auch die thermische Stabilität der erwähnten Hydratphasen. Letztlich wirken sich somit die verwendeten Verflüssigersysteme entscheidend auf das Aufheizverhalten der Feuerbetone aus. Der indirekte Einfluss der Verflüssigersysteme (Verflüssiger + jeweils angepasste Menge an Anmachwasser) auf das Porengefüge und die Permeabilitäten ist somit viel entscheidender für das Entwässerungsverhalten der Feuerbetone als ihr direkter Einfluss über die morphologische Gestalt der kristallisierten Hydratphasen bzw. der Einfluss der Morphologie auf deren thermische Stabilität.

6.4.4. Einfluss der zugesetzten Fasern (über ihre Auswirkung auf das Porengefüge) auf die thermische Stabilität der Zementhydratphasen

Die für den MCC-A F bzw. den MCC P+Z F ermittelten MMH-Kurven zeigen ein sehr ähnliches Muster an Signalen, verglichen mit den entsprechenden faserfreien MCC. Jedoch sind die Signale oberhalb S3 (bei 170 °C) zu etwas niedrigeren Temperaturen verschoben. Es betrifft also die Signale bzw. die ihnen zugrunde liegenden Entwässerungsreaktionen oberhalb der Schmelztemperatur der PP-Fasern. Die Differenz beträgt maximal ~ 40 K (S6 in MCC-P+Z, Bild 54b), meist liegt sie aber im Bereich von weniger als 15 K. Damit in Übereinstimmung zeigen die Ergebnisse der Thermogravimetrie, dass

die Entwässerung der MCC mit Fasern bei etwas niedrigeren Temperaturen stattfindet. Die MMH-Kurven des MCC-PC und des MCC-PC F verlaufen bis zum Signal S3 (C₂AH₈) nahezu identisch. Anschließend verläuft die MMH-Kurve des MCC-PC F auf einem niedrigeren Niveau als die faserfreie Varietät. Der Effekt kann dadurch erklärt werden, dass der faserhaltige Feuerbeton aufgrund einer höheren Permeabilität eine höhere Siederate von Porenwasser ermöglicht. Darauf deutet auch die schnellere Gewichtsabnahme der Probe (TG-Kurve) in diesem Temperaturintervall. Bei 250-260 °C erfolgt das Signal S4 (Siedeende), dann bei 325 °C die thermische Zersetzung von Katoit (S6) und bei ca. 500 °C die thermische Zersetzung von Böhmit (S7).

Die faserfreie Modifikation von MCC-PC zeigt hingegen ein intensives Signal bei 294 °C. Es wurde diskutiert, dass es sich hierbei um das Signal S4 handelt (Siedeende Porenwasser), was einen Druck von 77 bar in der Mitte des Prüfkörpers bedeuten würde. Da sich diese Druckspitze jedoch nur im Zentrum der Probe ereignen würde erscheint es möglich, dass der Prüfkörper dieser Belastung standhalten könnte. Im Vergleich der beiden Proben wird in jedem Fall ein sehr deutlicher, druckentlastender Effekt der zugesetzten Fasern erkennbar.

Im Einzelnen wurde folgender Einfluss der PP-Fasern auf die Signale S1 bis S7 festgestellt:

S1 (Nachhydratation)

Bei den MCC mit PC oder P+Z haben die Fasern keinen feststellbaren Effekt auf die Temperaturen und die Intensitäten von S1. Nur bei MCC-A F ist die Intensität gegenüber dem faserfreien Feuerbeton etwas verringert. S1 liegt im Temperaturbereich unterhalb der Schmelztemperatur der PP-Fasern, so dass kein Effekt der Fasern zu erwarten ist.

S2 (thermische Zersetzung von CAH₁₀)

In den MMH-Kurven der MCC mit Zusatz an Fasern wurden keine Signale S2 festgestellt, die auf die thermische Zersetzung von CAH₁₀ verweisen würden.

S3 (thermische Zersetzung von C₂AH₈)

Anhand der MMH-Ergebnisse verringert sich die Temperatur der thermischen Zersetzung von C₂AH₈ in MCC-P+Z durch den Zusatz von PP-Fasern sehr geringfügig von 168 auf 164 °C, bei dem MCC-PCE entsprechend von 174 auf 169 °C. Bei MCC-A ist S3 in den MMH-Kurven nicht erkennbar. S3 scheint allgemein (mit oder ohne Fasern) vom Porendruck wenig beeinflussbar zu sein.

S4 (Siedeende Porenwasser)

Für den MCC-A F und den MCC-P+Z F verringern sich die Temperaturen für S4 um 14 bzw. 26 K im Vergleich zu den entsprechenden faserfreien MCC. Dies entspricht nach der Antoine-Gleichung der Minderung der Porendrucke um 2 bzw. 8 bar. Bei MCC-PC-F verringert sich S4 außerordentlich von 294 °C auf 260 °C was einer erheblichen Druckminderung von 7,7 auf 4,6 MPa entspricht.

S5 (thermische Zersetzung von AH₃)

In den MMH-Kurven der MCC-P+Z und MCC-P+Z F ist jeweils kein Signal S5 vorhanden. Trotz der Absenkung des Siedeintervalls (S4) durch den Zusatz der Fasern sind die entstehenden hydrothermalen Bedingungen offenbar immer noch ausreichend, um auch in MCC-P+Z F Böhmit zu bilden.

Bei MCC-A F vermindert sich S5 gegenüber MCC-A nur geringfügig um 6 K. Für den Feuerbeton MCC-PC ist der Einfluss der Fasern auf die Entwässerung nicht so eindeutig. Die thermische Zersetzung von Gibbsit ist mit Fasern nicht zu erkennen, offenbar wurde er hier während der lang andauernden hydrothermalen Bedingungen in Böhmit umgewandelt. Im Gegensatz dazu tritt S5 bei MCC-PC F bei 250 °C auf. Der Zusatz an Fasern verhindert offenbar die Bildung von Böhmit.

S6 (thermische Zersetzung von C₃AH₆)

Die Temperatur von S6 verringert sich bei den mit Acrylat verflüssigten MCC durch den Zusatz an Fasern um 15 K, bei MCC-P+Z allerdings um 41 K. Bei MCC-PC ist mit dem Zusatz an Fasern keine Beeinflussung von S6 feststellbar, allerdings ist das Signal in dem Feuerbeton mit Fasern deutlich intensiver.

S7 (thermische Zersetzung von Böhmit)

S7 kann in den MMH-Kurven der MCC-A (mit und ohne Fasern) nicht festgestellt werden. Bei MCC-P+Z F ist im Vergleich zu MCC-P+Z kein deutlicher Einfluss auf Temperatur und Intensität von S7 festzustellen. Die Minima verlaufen sehr flach und die formal festgestellte Temperaturdifferenz ihrer Minima von 18 K scheint bei visuellem Vergleich der MMH-Kurven wenig aussagekräftig. Bei MCC-PC verringert sich S7 durch den Faserzusatz um 28 K.

Die Signale in den MMH-Kurven der LCC-Feuerbetone mit Zusatz an PP-Fasern unterscheiden sich nicht grundsätzlich von den Signalen in den faserfreien LCC. Einige Signale der Feuerbetone mit Faserzusatz verschieben sich zu etwas niedrigeren Temperaturen (Tabelle 18, Tabelle 19). So liegt das Siedeende (S4) bei LCC-A F bei 148 °C statt bei 168 °C ohne Fasern. Bei LCC-P+Z liegt das Siedeende bei Anwesenheit der Fasern 15 K früher als ohne Fasern. Im Gegensatz zu den MCC-PC lässt sich bei den LCC-PC kaum ein Einfluss der Fasern auf das Siedeende erkennen. Auf die thermische Zersetzung von C₃AH₆ (S6) ist bei allen drei LCC eine Absenkung der Zersetzungstemperatur von etwa 15 K zu erkennen. Bei LCC-P+Z ist auch die thermische Zersetzung von Böhmit (S7) etwas zu niedrigeren Temperaturen verschoben, bei LCC-PC ist kein Unterschied feststellbar.

Aufgrund der festgestellten Explosionsneigung konnten keine systematischen MMH/TG-Untersuchungen an den faserfreien ULCC durchgeführt werden. An einem Prüfkörper des ULCC-A wurde der MMH-Aufbau provisorisch in dem Ofen aufgebaut, der für die Explosionstests verwendet wurde. Der Verlauf der MMH-Kurve endet hier mit der Explosion des Prüfkörpers bei einer Temperatur von

144 °C (gemessen in der Probenmitte). Das Bersten des Prüfkörpers findet während der hydrothermalen Siedephase des Porenwassers statt. Mit der faserhaltigen Variation des ULCC-A fand mit der geleichen Aufheizrate von 250 K/h keine Explosionen statt.

6.4.5. Untersuchung der Kinetik der Zersetzung der Zementhydratphasen mit LFA

Mit Hilfe der Laser Flash Analyse (LFA) wurde festgestellt, dass sich die Temperaturleitfähigkeit der Feuerbetone im Zuge ihrer Entwässerung wie erwartet deutlich verringert. Jedoch zeigte sich auch, dass LFA nicht (wie erwartet) dazu geeignet ist, die Zersetzungskinetik der Hydratphasen mit LFA zu ermitteln. Die Zersetzungsreaktionen laufen für diese Art der Analyse zu schnell ab. Insofern lässt sich festhalten, dass die Zersetzungsreaktionen bei Erreichen der Reaktionstemperaturen offenbar schnell ablaufen. Schon mit MMH wurde über die Variation der Aufheizrate festgestellt, die thermische Zersetzung der CAH-Phasen offenbar nicht in hohem Maße kinetisch beeinflusst wird. Daher war es auch nicht möglich mit LFA zu beobachten, wie sich die Temperaturleitfähigkeit bei konstanter Temperatur über die Zeit verringert. Folgende Beobachtungen konnten gemacht werden:

- Wenn die notwendige Temperaturkonstanz zum Start der ersten LFA-Messung bei der angesteuerten Temperaturstufe erreicht ist, ist die zu untersuchenden Entwässerungsreaktion bereits abgeschlossen. Dies ist erkennbar an dem bei dieser Temperatur bereits relativ verminderten Niveau der mit LFA ermittelten Temperaturleitfähigkeiten. Die ausgewählten Temperaturstufen liegen dabei schon etwas niedriger als die Temperaturen, bei der die zu untersuchende Entwässerungsreaktion entsprechend der MMH-Ergebnisse abläuft, so dass während der konstanten LFA-Messtemperatur eigentlich ein langsamer Reaktionsverlauf erwartet wurde.
- Während bei MMH die TLF dynamisch während der kontinuierlichen Aufheizung ermittelt wird, erfolgen die Messungen mit LFA bei konstanten Ofentemperaturen. Die für LFA-Proben sehr großen Prüfkörper sind aber offenbar noch zu klein, um während der notwendigen Haltezeiten für eine Serie von Einzelmessungen einen Porendruck im Inneren des LFA-Prüfkörpers aufrecht zu erhalten. Da bei MMH keine Haltezeiten eingestellt werden und die Prüfkörper noch deutlich größer sind als die LFA-Prüfkörper besteht hier ein systematischer Unterschied für beide Messverfahren hinsichtlich des Porendrucks während der Messung. Somit verlaufen die vom Porendruck beeinflussten Entwässerungsreaktionen im LFA-Prüfkörper bei tendenziell niedrigeren Temperaturen ab als bei MMH. Das kontinuierliche Aufheizen in MMH ist dabei zwar grundsätzlich näher an der betrieblichen Praxis, allerdings sind im Betrieb die Aufheizraten viel langsamer. Somit sind die Verhältnisse im LFA-Prüfkörper auch nicht ganz abwegig.
- In den Temperaturintervallen, in denen anhand der MMH-Messung **keine** Reaktionen ablaufen, stimmen die mit LFA und MMH ermittelten effektiven Temperaturleitfähigkeiten gut über-

ein. Besonders deutlich wird die Übereinstimmung der mit beiden Methoden ermittelten Temperaturleitfähigkeiten für die zweiten Aufheizungen. Dies untermauert den grundsätzlichen Wert beider Methoden zur Bestimmung der Temperaturleitfähigkeit, allerdings der von vollständig getrockneten Feuerbetonen.

Insgesamt betrachtet zeigte sich, dass durch mit verschiedenen Aufheizraten durchgeführte MMH-Untersuchungen und Betrachtung der dadurch ausgelösten Veränderungen der Signale in den MMH-Kurven, die mit Phasenumwandlungen im Zuge der Entwässerung im Zusammenhang stehen (incl. der Siedephase des Porenwassers), aussagekräftigere Ergebnisse zum Entwässerungsverhalten der Feuerbetone gewonnen werden können als mit LFA.

6.4.6. Einfluss des Porengefüges auf die Zersetzung von Zementhydratphasen

Die Korrelation zwischen den Poreneigenschaften (offene Porosität) der verflüssigten Feuerbetone und deren Aufheizverhalten (MMH-TG) wurde bereits in Kapitel 6.4.3 untersucht. Ein grundsätzlicher Einfluss des Porengefüges auf das Entwässerungsverhalten wurde über den Vergleich der Signalmuster (S1-S7) der an zerkleinerten und den entsprechenden intakten Feuerbetonen gewonnenen MMH-Ergebnisse erkannt. So laufen in den zerkleinerten Feuerbetonen (Siebfraktionen < 1 mm) die meisten im Zuge der Entwässerung stattfindenden Phasenübergänge bei deutlich niedrigeren Temperaturen ab. Ausnahme ist das Signal S3 (= thermische Zersetzung von C₂AH₈), das sowohl in den Schüttungen als auch in den intakten Feuerbetonen bei ca. 170 °C stattfindet. Hingegen wurde für die thermische Zersetzung von C₃AH₆ eine maximale Verschiebung der Zersetzungstemperatur von ca. 360 °C (LCC-PC) auf ca. 290 °C (Schüttung <1 mm des LCC-PC) festgestellt. Zudem sind Phasenumwandlungen im System der Aluminiumhydrate deutlich vom Porengefüge bzw. dem daraus beim Aufheizen resultierenden Porendruck beeinflusst. So findet die Bildung von Böhmit (AH) nur bei hohen Porendrucken statt, offenbar unter hydrothermalen Bedingungen. Außerdem zeigt sich durch den Vergleich der Schüttungen mit den intakten Feuerbetonen, dass in den intakten Feuerbetonen die Gegenwart von Porenwasser bis in den hydrothermalen Bereich eher normal als eine Ausnahme ist und ebenfalls eine wichtige Rolle für die Bildung und die Evolution der Zementhydratphasen spielt. Zunächst ermöglicht es bei Temperaturen um 100 °C die Nachhydratation von reliktischem Zement. In den Schüttungen fehlt jedoch das Porenwasser und Nachhydratation findet nicht statt. Porenwasser unter hohem Druck bei T > 100 °C (hydrothermale Bedingungen) spielt dann bei weiter ansteigenden Temperaturen eine entscheidende Rolle für die thermische Stabilität bestimmter Zementhydratphasen (insbesondere C₃AH₆, AH₃ und AH) und somit für das Aufheizverhalten, wobei das Porenwasser selbst natürlich einen Hauptfaktor bei der Entstehung hoher Porendrucke darstellt.

Bei der Betrachtung von Bild 106 und Bild 107 wird deutlich, dass die nach Trocknung bei 110 °C gemessene offene Porosität kaum einen Einfluss auf das Entwässerungsverhalten erkennen lässt. Der Einfluss der offenen Porosität wird erst deutlich, wenn die Werte verwendet werden, die für den

Temperaturbereich bestimmt wurden, bei denen die jeweiligen Phasenumwandlungen stattfinden. So zeigt Bild 107 besonders eindeutig den Zusammenhang zwischen der offenen Porosität bei Signaltemperatur und dem Signal S4, dem Siedeende des Porenwassers und somit der Beendigung der hydrothermalen Phase (in der Mittelachse des MMH-Prüfzylinders). Auch für die thermische Zersetzung von C₃AH₆ zeigt sich eine eindeutige Tendenz hin zu höheren Zersetzungstemperaturen bei abnehmender offener Porosität.

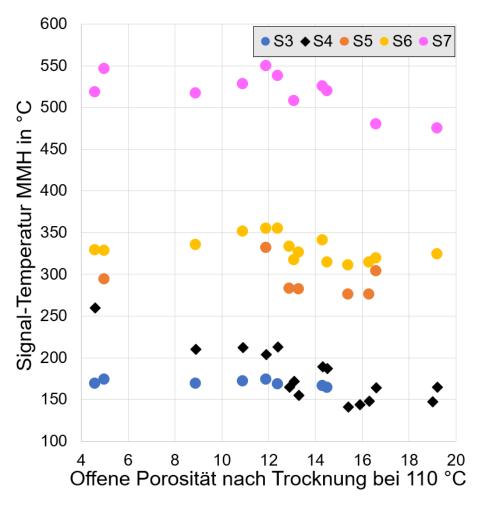


Bild 106: Gegenüberstellung der Signaltemperaturen (Minima in den MMH-Kurven) und der offenen Porositäten nach Trocknung bei 110 °C. Es ist klar, dass die offenen Porositäten sich im Zuge der Aufheizung verändern. Daher erfolgt in Bild 107 eine weitere Gegenüberstellung, in der die Temperaturabhängigkeit der offenen Porosität besser berücksichtigt wird.

In gleicher Weise, aber in weitaus geringerem Ausmaß, zeigt sich auch für C₂AH₈ eine Abhängigkeit der Zersetzungstemperatur von der offenen Porosität bei der entsprechenden Reaktions- bzw. Signaltemperatur. Besonders niedrig liegen die S4-Signaltemperaturen für die mit Acrylat verflüssigten Feuerbetone. Sie liegen noch unterhalb der Trendlinie für S4, die von den mit PC und P+Z verflüssigten Feuerbetone gebildet wird. Ein Erklärungsansatz könnte darin bestehen, dass hier der Wasserdampfdruck in den Poren niedriger ist als der Gleichgewichtsdampfdruck nach der Antoine-Gleichung, möglicherweise weil das Porenwasser frühzeitig vollständig absieden konnte.

Die verwendeten Verflüssiger, auch in Verbindung mit der jeweils angepassten Menge an Anmachwasser und ihrem Einfluss auf die Abbindekinetik (Hydratationsgrad nach 24 h), beeinflussen das Porengefüge der intakten Feuerbetone, so dass der während der ersten Aufheizung entstehenden Porendruck sich entscheidend auf die thermische Stabilität der erwähnten Hydratphasen auswirkt.

Das beeinflusste Porengefüge, die dadurch offenbar beeinflusste Permeabilität und der damit im Zusammenhang stehende Aufbau des Poreninnendrucks während der ersten Aufheizung haben eine deutlich größere Bedeutung für das Entwässerungsverhalten und somit auch auf das Aufheizverhalten der intakten Feuerbetone als der direkte Einfluss der morphologischen Gestalt der Hydratphasenkristalle auf deren thermische Stabilität.

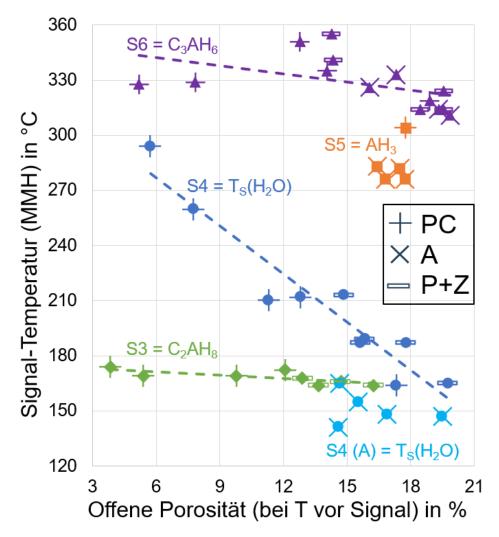


Bild 107: Gegenüberstellung der Signaltemperaturen (Minima in den MMH-Kurven) und der offenen Porositäten, so wie sie nach thermischer Vorbehandlung bei Temperaturen gemessen wurden, die jeweils vor der Temperatur des betreffenden Signals lag.

7. Fazit

Die Wahl unterschiedlicher Verflüssigersysteme führt zu Unterschieden in den für das Aufheizverhalten von Feuerbetonen wesentlichen Eigenschaften Abbindegeschwindigkeit, Biegefestigkeit und Porosität. Diese Unterschiede sind umso stärker ausgeprägt, je mehr Zement im Feuerbeton enthalten ist, dessen Hydratisierung durch die gewählten Verflüssiger beeinflusst wird.

Festigkeitsentwicklung während des Abbindens (Kapitel 5.2.1): Bei Raumtemperatur benötigen die verflüssigten Feuerbetone im Vergleich zu einem verflüssigerfreien Referenzfeuerbeton eine längere Hydratationszeit, um die für ein sicheres Aufheizen benötigte Festigkeit zu erzielen. Alle untersuchten Verflüssiger zeigen im Vergleich zu einem RC ohne Verflüssiger eine festigkeitssteigernde Wirkung, da diese durch die Verflüssigung dichter gepackt sind und weniger Wasser enthalten. In Abhängigkeit vom eingesetzten Verflüssiger wurden deutliche Unterschiede in der nach Ende des Abbindezeitraums von 48 Stunden erreichten Festigkeit nachgewiesen. Eine mögliche Erklärung ist die durch Röntgenbeugungsanalyse bestätigten, unterschiedlich weit fortgeschrittene Hydratation der Zementphasen.

Offene Porosität (Kapitel 5.8.4) und Porengrößenverteilung (Kapitel 5.8.5): Nach der Trocknung bei 110 °C für 24 Stunden ist die offene Porosität (OP) des Feuerbetons umso geringer, je höher der Zementanteil in der Feuerbetonmischung ist, aber umso mehr zusätzliche Porosität entsteht beim Aufheizen. Dies lässt sich darauf zurückführen, dass im getrockneten Feuerbeton die gebildeten Hydratphasen den Porenraum einnehmen durch deren Zersetzung beim Aufheizen zusätzliche Porosität entsteht. Nach dem Aufheizen ist die OP der unterschiedlich verflüssigten Feuerbetone weitgehend angeglichen. Noch bestehende Unterschiede korrelieren mit der Menge des zugegebenen Anmachwassers.

Die verwendeten Verflüssiger haben einen großen Einfluss auf die offene Porosität nach dem Trocknen, der sich mit steigendem Zementgehalt verstärkt. Bei Verflüssigung mit Polycarboxylatether (PC) wird nach der Hydratation im Klimaschrank und nach dem Erhitzen im untersuchten Temperaturbereich < 400 °C eine niedrigere OP festgestellt als bei mit Acrylat (A) oder Natriumpolyphosphat + Zitronensäure (P+Z) verflüssigten Feuerbetonen. Die Poren der mit A verflüssigten Feuerbetone sind im Mittel weit größer als bei Feuerbeton-Varietäten mit P+Z, die trotz hoher OP ähnlich feine Poren zeigen wie Varietäten mit PC mit geringerer OP. Bei der Temperaturbehandlung nimmt der mittlere Porendurchmesser der mit Acrylat verflüssigten Feuerbetone weiter zu, während er für P+Z und PC sehr niedrig bleibt.

Alle untersuchten Feuerbetone zeigen bis 250 °C eine Zunahme der OP bei steigender Vorbehandlungstemperatur. Mögliche Ursachen hierfür sind eine Umwandlung wasserreicher in wasserärmere Hydratphasen (AH_x-Gel, AH₃, CAH₁₀, C₂AH₈, AH, C₃AH₆), die bevorzugte Bildung von wasserarmen Hydratphasen bei höheren Temperaturen oder die Zersetzung der zuvor gebildeten Hydratphasen. Die beim Erhitzen entstehende, zusätzliche Porosität tritt überwiegend in Form sehr feiner Poren auf.

Bei Zugabe von Fasern wurde bereits nach dem Abbinden eine höhere offene Porosität als bei den entsprechenden faserfreien Feuerbetonen festgestellt. Dies ist mit dem erhöhten Anmachwassergehalt dieser Feuerbetone erklärbar. Die Zunahme der offenen Porosität beim Überschreiten des Schmelzpunktes der Fasern (160 °C) ist nicht signifikant höher als bei faserfreien Feuerbetonen und kann nicht eindeutig mit dem Schmelzen und Ausbrennen von Fasern korreliert werden. Nur wenn die Porosität der Feuerbetone nach dem Abbinden sehr gering ist (in diesem Forschungsvorhaben im Fall der mit Polycarboxylatether verflüssigten LCC und MCC) wird, bei Zugabe von Fasern, eine deutlich höhere Zunahme der OP nach dem Ausbrennen der Fasern beobachtet.

Permeabilität (Kapitel 5.8.6): Die Permeabilität der untersuchten Feuerbetone und deren Entwicklung beim Erhitzen kann nicht mit der offenen Porosität korreliert werden. So zeigt beispielsweise der LCC-PC nach Vorbehandlung bei 130 °C die höchste Permeabilität, aber die geringste offenen Porosität im Vergleich der untersuchten LC-Feuerbetone. Obwohl mit steigender Vorbehandlungstemperatur die OP aller Modellfeuerbetone zunimmt, ist nur für einen Teil der LCC-Varietäten ein vergleichbarer Trend in der Permeabilitätsentwicklung zu beobachten. Der Vergleich mit der Entwicklung der Porengrößenverteilung legt den Schluss nahe, dass die ab 100 °C Vorbehandlungstemperatur entstehenden, sehr kleinen Poren keinen wesentlichen Beitrag zur Permeabilität des Feuerbetons leisten. Dagegen erhöht der mit der Temperatur zunehmende Anteil von Poren > 0,4 μm, der bei Verwendung von Acrylat beobachtet wird, die Permeabilität. Es bleibt aber festzuhalten, dass für eine abschließende Beurteilung der Zusammenhänge zwischen Permeabilität und offener Porosität oder Porengrößenverteilung weitere Untersuchungen erforderlich sind.

Biegezugfestigkeit (Kapitel 5.8.3): Im Vergleich zum Referenzversatz (RC) steigert die Zugabe von Verflüssigern die Biegefestigkeit der untersuchten Feuerbetone im getrockneten und im gebrannten Zustand. Im Fall der Messungen nach dem Trocknen ist dies hauptsächlich auf die generell geringere offene Porosität zurückzuführen. Aber auch die MCC und LCC zeigen bei annähernd gleicher oder höherer offener Porosität als der RC, trotz niedrigerem Zementgehalt, eine höhere KBF als der Referenzversatz. Nach dem Brennen besteht keine erkennbare Korrelation der KBF mit der offenen Porosität, jedoch eine Abhängigkeit vom Zementgehalt. Wie stark sich der höhere Zementgehalt auf die KBF auswirkt, ist wiederum abhängig vom verwendeten Verflüssiger.

Mineralphasenzusammensetzung und Mikrostruktur (Kapitel 5.8.1 und 5.8.2): Nach 48 Stunden Lagerung bei 20 °C haben sich in dem mit Acrylat verflüssigten Modell-Feuerbeton signifikant weniger kristalline Hydratphasen (CAH₁₀, dünntafelig und AH₃, prismatisch) gebildet, als bei Verwendung von P+Z oder PC. Bei allen Modell-Feuerbetonen erfolgt beim Aufheizen auf 130 °C eine signifikante Nachhydratation residualer Zementklinkerphasen unter Rekristallisation der Hydratphasen. In der

Nachhydratation werden vorwiegend AH₃ und C₃AH₆ gebildet. Im Falle der dichteren Feuerbetonvarietäten mit P+Z oder PC wird das Mikrogefüge dominiert von rasenbildendem kurzprismatischem, idiomorphen Gibbsit, begleitet von Aggregaten aus feinen Kristallen mit tafeligem Habitus. Im Fall des poröseren Feuerbetons mit A lassen überwiegend feinkörnige Kristalle vermuten, dass für die Nachhydratation zu wenig Wasser zur Verfügung stand.

In den Feuerbetonen mit P+Z und PC ist noch bis 250 °C ein Zuwachs an Hydratphasen erkennbar. Ab 180 °C Vorbehandlungstemperatur wird hier auch Böhmit nachgewiesen. Die Bildung von Böhmit setzt hydrothermale Bedingungen voraus und gibt damit einen Hinweis auf das Vorliegen eines hohen Porendrucks. Bei thermischer Vorbehandlung bei 250 °C verlieren die prismatischen Gibbsitkristalle augenscheinlich ihre scharfen Kanten, was vermutlich darauf hindeutet, dass Gibbsit bei diesen Temperaturen nicht mehr stabil ist.

Einfluss der Verflüssiger auf das Entwässerungsverhalten: Anhand der MMH-Ergebnisse in Kombination mit den begleitenden TG-Untersuchungen wird klar, dass die mit verschiedenen Verflüssigern und der jeweils angepassten Menge an Anmachwasser hergestellten, ansonsten aber identischen Feuerbetone, grundsätzlich ein sehr unterschiedliches Entwässerungsverhalten zeigen. Pauschal besteht also ein Einfluss des verwendeten Verflüssigersystems (Verflüssiger + angepasste Menge an Anmachwasser) auf das Entwässerungsverhalten. Zum einen zeigen sich Unterschiede in den Temperaturen, bis zu denen das Porenwasser den Feuerbeton gänzlich verlassen hat und zum anderen gibt es Unterschiede in den Temperaturen, bei denen Hydratphasen ihr Kristallwasser abgeben. Außerdem beeinflusst das Verflüssigersystem schon die Assoziation der beim Abbinden gebildeten Hydratphasen, den Hydratationsgrad nach 48 und während der ersten Aufheizung auch die Intensität der Nachhydratation zwischen ca. 90 und 130 °C. Der vom Verflüssigersystem indirekt (über das Porengefüge) beeinflusste Porendruck ist auch verantwortlich dafür, ob während der Aufheizung Böhmit entsteht, welcher erst bei 500-550 °C entwässert.

Dabei übt das Verflüssigersystem offenbar nur einen **geringen direkten Einfluss** aus auf die thermische Stabilität der gebildeten Zementhydratphasen. Es wurde untersucht, ob der verwendete Verflüssiger die morphologische Gestalt (Habitus und Größe) der Hydratphasen-Kristalle beeinflusst und so deren thermische Stabilität. Dazu wurde die thermische Zersetzung der Zementhydratphasen in zerkleinerten Feuerbetonen (Schüttungen 0-1 mm) untersucht, in denen sich naturgemäß kein Porendruck während der Entwässerung aufbauen kann und so nur noch die morphologische Gestalt der Zementhydratphasen-Kristalle deren thermische Stabilität beeinflussen sollte. Es wurde erkannt, dass sich die MMH-Ergebnisse der zerkleinerten Feuerbetone deutlich weniger unterschieden als die Ergebnisse der Untersuchungen der intakten Feuerbetone. Daraus muss geschlossen werden, dass das vom Verflüssigersystem beeinflusste Porengefüge und der damit einhergehende Aufbau des Porendrucks in den Feuerbetonen die thermische Stabilität der Zementhydratphasen sowie die Anwe-

senheit von flüssigem Porenwasser bei Temperaturen oberhalb von 100 °C für die deutlichen Unterschiede im Entwässerungsverhalten der intakten Feuerbetone verantwortlich ist und nicht die morphologische Ausprägung der Hydratphasen-Kristalle. REM-Untersuchungen haben allerdings gezeigt, dass mit verschiedenen Verflüssigern durchaus Unterschiede in der Ausbildung und im Auftreten verschiedener Hydratphasen bestehen, insbesondere Aluminiumhydrate. Auch wenn dies bei den zerkleinerten Feuerbetonen keine Rolle bei deren Entwässerung beim ersten Aufheizen spielt, ist dennoch denkbar, dass die morphologische Ausbildung verschiedener Hydratphasen das Porengefüge und die Permeabilität der intakten Feuerbetone beeinflusst.

Der große Unterschied der MMH-Ergebnisse (Temperaturen und Auftreten der Signale S1-S7 mit Ausnahme S3) der zerkleinerten Feuerbetone (Schüttungen) im Vergleich zu den dazugehörigen intakten Feuerbetonen zeigt, dass der in intakten Feuerbetonen beim Aufheizen entstehende Porendruck einen entscheidenden Einfluss hat auf die thermische Stabilität einiger Hydratphasen, insbesondere bei den Aluminiumhydratphasen (Gibbsit AH₃ und Böhmit AH) und Katoit C₃AH₆. Insgesamt betrachtet führt die Druckstabilisierung von Hydratphasen dazu, dass die vollständige Entwässerung der Feuerbetone erst bei deutlich höherer Temperatur abgeschlossen ist (Böhmit bei 550 °C) als es bei den Schüttungen der Fall ist (Katoit bei ca. 300 °C). Letztlich ist aber auch die Druckstabilisierung von flüssigem Porenwasser bis weit in den Bereich hydrothermaler Bedingungen im Porenraum der Feuerbetone von besonderer Relevanz in Bezug auf das Aufheizverhalten und die Gefahr von explosivem Spalling.

Die verwendeten Verflüssiger, auch in Verbindung mit der jeweils notwendigerweise angepassten Menge an Anmachwasser, beeinflussen das Porengefüge der realen Feuerbetone (Kapitel 5.8.4). Der während der ersten Aufheizung entstehende Wasserdampfdruck in den Poren wird dadurch entscheidend beeinflusst und in Folge auch die thermische Stabilität der erwähnten Hydratphasen. Letztlich wirken sich somit die verwendeten Verflüssigersysteme entscheidend auf das Aufheizverhalten der Feuerbetone aus. Der indirekte Einfluss der Verflüssigersysteme (Verflüssiger und jeweils angepasste Menge an Anmachwasser) auf das Porengefüge und die Permeabilitäten ist somit viel entscheidender für das Entwässerungsverhalten der Feuerbetone als ihr direkter Einfluss über die Beeinflussung der morphologischen Gestalt der kristallisierten Hydratphasen bzw. der Einfluss der Morphologie auf deren thermische Stabilität.

8. Literaturverzeichnis

- /ALM05/ Al'myasheva, O.V., Korytkova, E.N., Maslov, A.V., Gusarov, V.V.: "Preparation of nanocrystalline alumina under hydrothermal conditions", Inorganic Materials, 41(5), 460-4667,2005.
- /AND30/ Andreasen, A.H.M.; Andersen, J.: "Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten)", Kolloid-Zeitschrift, 50, 217–228, 1930.
- /AND31/ Anderegg, F. O.: "Grading Aggregates II The Application of Mathematical Formulas to Mortars. Industrial & Engineering Chemistry", 23(9), 1058-1064, 1931.
- /ARN04/ Arnold, M.: "Polymergesteuerte Kristallisation von Calciumhydroxid und Calciumsilicathydrat", Dissertation Universität Siegen, 2004.
- Auvray J.M.; Zetterström C.; Wöhrmeyer C.; Fryda H., Parr C., Eychenne-baron C.: "Dry-out Simulation of Castables Containing Calcium aluminate Cement under Hydrothermal Conditions", Proc. UNITECR 2013, Victoria, 2013.
- /ANT13/ Antonovič V., Kerienėb J., Borisa R., Aleknevičiusa M.: "The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure", Procedia Engineering 57, 99 106, 2013.
- /BAA95/ Baader, F.A.: "Enzymkatalysiertes formgebungsverfahren für Aluminiumoxid-Keramiken", Promotion, ETH Zürich, 1995.
- /BAR74a/ Barret, P.; Ménétrier, D.; Bertrandie, D.: "Contribution to the study of the kinetic mechanism of aluminous cement setting I latent periods in heterogeneous and homogeneous milieus and the absence of heterogeneous nucleation", Cement and Concrete Research 4(4), 545-556, 1974.
- /BAR19/ Barakat, A.J.; Pel, L.; Krause, O. et al.: "Direct observation of the moisture distribution in calcium aluminate cement and hydratable alumina-bonded castables during first-drying: An NMR study", Journal of the American Ceramic Society, Bd. 2019, Wiley, 2019.
- /BAR20/ Barakat, A.J.; Pel, L.; Adan, O.C.G., Krause, Olaf et al.: "The effect of permeability enhancement on dry-out behavior of CA- and microsilica gel-bonded castables as determined by NMR", Ceramics International: CI; the internat. journal of ceramics. Bd. 2020, Amsterdam: Elsevier Science, 2020 online first.
- /BRO15/ Brochen, E., Simmat, R., Dannert, C., Krause, O., Rathaj, M.: "Effect of sintering aids on the thermomechanical properties of a LCC determined by wedge splitting tests at

- critical temperatures identified by the method of monotonic heating (MMH)", Conference Proceedings UNITECR'15, Wien, 236, 2015.
- /BAE97/ Baetzner, S.: "Untersuchungen zur Kristallisation von Gips in Rauchgasentschwefelungsanlagen", Tectum Verlag (1998), 1997.
- /BUS90/ Bushnell-Watson, S. M.; Sharp, J. H.: "On the cause of the anomalous setting behaviour with respect to temperature of calcium aluminate cements", Cement and Concrete Research 20(5), 677-686, 1990.
- /CAP90/ Capmas, A.; Menetrier-Sorrentino, D.; Damidot, D.: "Effect of temperature on setting time of calcium aluminate cements", Proceedings of Calcium Aluminate Cements, 65-80, 1990.
- /CAR04/ F.A. Cardoso, M.D.M. Innocentini, M.F.S. Miranda, F.A.O. Valenzuela, v.c. Pandolfelli, "Drying behavior of hydratable alumina-bonded refractory castables", Euro. Ceram. Soc., 24, 797-802, 2004.
- /CHA87/ Le Chatelier, H.: "Experimental researches on the constitution of hydraulic mortars", Übersetzung ins Englische aus 1905, McGraw publishing, 1887.
- /CON93/ Cong, X.; Kirkpatrick, R. J.: "Hydration of Calcium Aluminate Cements: A Solid-State ²⁷Al NMR Study" Journal of the American Ceramic Society 76(2), 409-416, 1993.
- /DIN92a/ Dinger, D. R.; Funk, J. E.: "Particle Packing, Part II Review of Packing of Polydisperse Particle Systems", Interceram 41(3), 176-179, 1992.
- /DIN92b/ Dinger, D. R.; Funk, J. E.: "Particle Packing III Discrete versus Continious Particle Sizes", Interceram 41(5), 332–334, 1992.
- /FRU14/ Fruhstorfer, J.; Aneziris, C.: "The influence of the coarse fraction on the porosity of refractory castables", Journal of Ceramic Science and Technology 5(2), 155-166, 2014.
- /FUJ86/ Fujii, K.; Kondo, W.; Ueno, H.: "Kinetics of Hydration of Monocalcium Aluminate", Journal of the American Ceramic Society 69(4), 361-364, 1986.
- /FUL07/ Fuller, W.B.; Thompson, S.E.: "The Laws of Proportioning Concrete", Transactions of the American Society of Civil Engineers 59(2), 67-143, 1907.
- /FUN94/ Funk, J.E.; Dinger, D.R.: "Particle Packing VI Applications of Particle Size Distribution Concepts", Interceram 43(5), 350–353, 1994.
- /FUR28/ Furnas, C.C.: "The relations between specific volume, voids, and size composition in systems of broken solids of mixed sizes", Report, Department of Commerce Bureau of mines, 1928.
- /FUR31/ Furnas, C.C.: "Grading aggregates I. Mathematical relations for beds of broken

- solids of maximum density", Industrial & Engineering Chemistry 23(9), 1052-1058, 1931.
- /GAR96/ van Garsel, D.: "High alumina cements and chemical binders, Refractories Technology an introduction and update", Seminar at Institute of Refractories Engineering, IRE, SouthMrica, 1-15, 1996.
- /GEO94/ George, C.M.: "Aspects of calcium aluminate cement (CAC) hydration", Proceedings of Refractories Symposium, American Ceramic Society, 1-21, 1994.
- /GES95/ Gessner, W.; Möhmel, S.; Schmalstieg, A.; Rettel, A.; Bayoux, J.-P.; Capmas, A.; Mathieu, A.: "On the influence of the specific surface area and Na₂O content of aluminas on the hydration processes in CaO*Al₂O₃ / Al₂O₃ mixes", Proceedings of UNITECR'95, 313-320, 1995.
- /GÖT05/ Götz-Neunhoeffer, F.: "Modelle zur Kinetik der Hydratation von Calciumaluminatzement mit Calciumsulfat aus kristallchemischer und mineralogischer Sicht", Habilitation, FAU Erlangen-Nürnberg, 2005.
- /GÖT06/ Götz-Neunhoeffer, F.: "Modelle zur Kinetik der Hydratation von Calciumaluminatzement mit Calciumsulfat aus kristallchemischer und mineralogischer Sicht." Erlanger Forschungen, Reihe B, Naturwissenschaften und Medizin, Band 29, 2006.
- /GRO07/ Großwendt, I.: "Modell zur Beschreibung der Trocknung von Feuerbetonen", Dr.-Ing. Diss. RWTH Aachen, 2007.
- /HEI07/ Heikal, M.; Morsy, M.S.; Radwan, M.M.: "Electrical conductivity and phase composition of calcium aluminate cement containing air-cooled and water-cooled slag at 20, 40 and 60 °C", Cement and Concrete Research 35(7), 1438-1446, 2005.
- /INN03/ Innocentini M.D.M.; Miranda M.F.S.; Cardoso F.A., Pandolfelli V.C.: "Vaporization Processes and Pressure Buildup during Dewatering of Dense Refractory Castables", J. Am. Ceram. Soc., 86 [9] 1500–503, 2003.
- /JIA95/ Jiang, S.P.; Mutin, J.C.; Nonat, A.: "Studies on mechanism and physico-chemical parameters at the origin of the cement setting I. The fundamental processes involved during the cement setting", Cement and Concrete Research 25(4), 779-789, 1995.
- /JIA96/ Jiang, S.P.; Mutin, J.C.; Nonat, A.: "Studies on mechanism and physico-chemical parameters at the origin of the cement setting II. Physico-chemical parameters determining the coagulation process", Cement and concrete research 26(3), 491-500, 1996.
- /KAS12/ Kasper, J.; Krause, O.; Schwarz, K.: "The electrical conductivity of refractory castables during setting: a simple and cost-effective measurement technique with considerations of reproducibility and applications Refractories for metallurgy", 55th International Colloquium on Refractories, EUROGRESS, Aachen, 78–81, 2012.

- /KAS17/ Kasper, J.; Bastian, M.; Dannert, C. et al.: "How does the pH-value influence the setting kinetics of hydraulically bonded refractory castables?", 60th International Colloquium on Refractories, EUROGRESS, Aachen, 44-47, 2017.
- /KLA11/ Klaus, S.; Götz-Neunhoeffer, F.; Neubauer, J.: "Der Einfluss von Zitronensäure auf die Hydratation von ternären Bindemittelsystemen Untersuchungen an einem Modellsystem", GDCh-Monographie, 44, 108, 159-164, 2011.
- /KLA13/ Klaus, S.; Neubauer, J.; Götz-Neunhoeffer, F.: "Hydration kinetics of CA₂ and CA Investigations performed on a synthetic calcium aluminate cement", Cement and Concrete Research, 43, 62–69, 2013.
- /KLA14/ Klaus, S.; Götz-Neunhoeffer, F.; Neubauer, J.: "Application of heat flow calculation to synthetic calcium aluminate cement mixes", Calcium Aluminates: Proceedings of the International Conference, Avignon, France, 65–74, 2014.
- /KLA15/ Klaus, S.; Neubauer, J.; Götz-Neunhoeffer, F.: "How to increase the hydration degree of CA the influence of CA particle fineness", Cement and Concrete Research, 67, 11–20, 2015.
- /KLE90/ Kleber, I.; Bautsch, H-J., Bohm.: "Einführung in die Kristallographie", Verlag Technik GmbH, Berlin, 17. Auflage, 1990.
- /KLE16/ Klein L, Krause O.: "Automatic Image Analysis of the Slump Flow and Comparison to Rheometrical Measurements with the Ball Measuring System", 59th International Colloquium on Refractories, EUROGRESS, Aachen, 155-158, 2016.
- /KOC11/ Kockegey-Lorenz, R.; Buhr, A.; Zacherl, D.; Long, B.; Hayashi, S.; Dutton, J.: "Review of Matrix Aluminas for Refractory Formulations", Proceedings of UNITECR'11, 789-794, 2011.
- /KOH19/ Koch, A.; Krause, O.; Kasper, J.; Dannert, C.: "Influence of water-soluble ions from recycled refractory raw materials on the coagulation and hydration velocity of CAC-bonded refractory castables", Proceedings of UNITECR'19, Yokohama, 2019.
- /KRA12/ Krause, O.; Cölle, D.; Schaffhauser, H.; Jahn, D.: "Setting Kinetics of High-dispersed Refractory Castables", Refractories Worldforum (4), 81–88, 2012.
- /KRA19/ Krause, O.; Erbar, L; Ulbrich, C. et al.: "Influence of Additives on the Crystallization and Dehydration of Calcium-Aluminate-Hydrate Phases Part I: The Change of Hydrate Phase Formation as a Function of Surface-active Substances in Refractory Castables Investigated by Field Emission Scanning Electron Microscopy", Proceedings of UNITECR'19, Yokohama, 916–920, 2019.
- /LAM01/ Lamour, V.H.R.; Monteiro, P.J.M.; Scrivener, K.L.; Fryda, H.: "Microscopic Studies of

- the Early Hydration of Calcium Aluminate Cements", Proceedings of Calcium Aluminate Cements 2001, 169-180, 2001.
- /LAN98/ Langenfeld, M.; Stark, J.: "Frühe Hydratation von Portlandzement unter Zusatzmitteleinfluss – dargestellt im ESEM-FEG", EDO Herbsttagung Saarbrücken 1998, Manuskript 13 vom 04.10.2002, 1998.
- /LAN01/ Landman, K.A.; Pel, L.; Kaasschieter, E.F.: "Analytic modelling of drying of porous materials", Math. Engin. Ind. 8, 89-122, 2001.
- /LEE01/ Lee, W.E.; Vieira, W.; Zhang, S.; Ghanbari Ahari, K.; Sarpoolaky, H.; Parr, C.: "Castable refractory concretes", International Materials Reviews, 46, 3J, 145-167, 2001.
- /LIT30/ Litzow, K.: "Über den Einfluß der Korngrößenverteilung der Schamotte auf die Dichte feuerfester Materialien", Glastechnische Berichte 8(3), 149-153, 1930.
- /LIT82/ Litovsky, E.: "Thermal Physical Properties of Refractories in the Wide Range of Temperature and Gas Pressure", Dr. of Sc. Theses, IVTAN of USSR Ac. of Sc., Moscow, 1982.
- /LUZ15/ da Luz, A.P.; Braulio, M.A.L.; Pandolfelli, V.C.: "3.2. Steric mechanism + 3.3. Electrosteric mechanism in Refractory Castables Engineering", ISBN: 978-3-87264-004-8, 31-39, 2015.
- /MAE09/ Maeda, E.; Jono, K.; Kanatani, S.; Haraoka, T.: "Analysis of Setting Mechanism of Low-Cement Castables", Journal of the Technical Association of Refractories, Japan 29(1), 26-34, 2009.
- /MAI00/ Maierhofer, C.: "Radaranwendungen im Bauwesen", ZfP-Zeitung 72, Dezember, 43–50, 2000.
- /MUE96/ Müller, R. H.; Nitzsche, R.; Paulke, B.-R.: Zetapotential und Partikelladung in der Laborpraxis: Einführung in die Theorie, praktische Messdurchführung, Dateninterpretation. ISBN: 978-3-8047-1465-6, 1996.
- /OLI03/ Oliveira, I.R.; Studart, A.R.; Valenzuela, F.A.O.; Pandolfelli, V.C.: "Setting behavior of ultra-low cement refractory castables in the presence of citrate and polymethacrylate salts", Journal of the European Ceramic Society 23, 2225–2235, 2003.
- /PAL16/ Paloua, M.; Kuzielováa, E.; Žemliþkaa, M.; Živicaa, V.: "The influence of sodium hexametaphosphate (Na6P6O18) on hydration of calcium aluminate cement under hydrothermal condition", Int. Conf. on Ecology and new Building materials and products, ICEBMP, 2016.
- /PAR05/ Parr, C.: "The impact of calcium aluminate cement hydration upon the properties of refractory castables", *J. Tech. Assoc. Refract.*, 25(2), 78–88, 2005.

- /PAR08/ Parr, C.: "Calcium aluminate cement what happens when things go wrong?", Proceedings of International Conference on Refractories, London, 1-11, 2008.
- /PAR08b/ Parr, C.; Fryda, H.; Liyama, M.; Borovsky, A.; Letouneux, J.-P.: "Interactions of calcium aluminate cements and other matrix components which control the initial hardening of deflocculated castables", TARJ raw material meeting, 2008.
- /PAR09/ Parr, C.; Simonin, F.; Touzo, B.; Wöhrmeyer, C, et al: "The impact of Calcium Aluminate Cement Hydration Upon the Properties of Refractory Castables", Technical Paper, Reference TP-GB-E-LAF-043, presented at TARJ meeting, Ako, Japan, 2009.
- /PAR10/ Parr, C. Assis, G.; Fryda, H; Liyama, M.; Borovsky, A.: "An investigation into the mechanisms and interactions which control the placing and hardening properties of defloculated castables", ANFRE Materias Primas, Montaje y Maquinaria de Refractarios, 2010.
- /PEL02/ Pel, L., Landman, K.A., Kaasschieter, E.F.: "Analytic solution for the non-linear drying problem", Int. J. Heat Mass Transfer 45, 3173-3180, 2002.
- /PEN99/ Pena, P.; De Aza, A.H.: "Cementos de aluminatos dicicos, constitucion, caracteristicas y aplicaciones", In Refractarios Monoliticos, Ed. Soc. Esp. Ceram. Y Vidrio, 85-106, 1999.
- /PÖT06/ Pötschke, J.; Simmat, R.; Litovsky, E.; Kleiman, J.: "A method to determinate the thermal conductivity in the range of 200-1600 °C", Proceedings of 49th Int. Coll. on Refractories, Aachen, 14–18, 2006.
- /PÖT10/ Pötschke, J.: "A novel model for drying refractory castables", Refractory Worldforum, 2, 2, 99-106, 2010.
- /ROE82/ Roesel, R.E.; Maczura, G.; Rothenbuhler, P.T.: "Calcium aluminate cemens for high strength refractory monolithics", Interceram, 5, 519-523, 1982.
- /SAN94/ Sandberg, B.; Myhre, B.: "Microsilica A versatile Refractory Raw Material", IREFCON 1994, 2-7, 1994.
- /SAL07/ Salomao, R.; Pandolfelli, V.C.: "Polypropylene Fibers and their effects on processing refractory castables", Int. J. App. Ceram. Technol. 4 [6], 496-502, 2007.
- /SCH90/ Sharp; Bushnell-Watson; Payne; Ward: "The effect of admixtures on the hydration of refractory calcium aluminate cements", 1990.
- /SCR98/ Scrivener, L.; Capmas, A.: "Calcium Aluminate Cements", Chapter 13 in Lea's Chemistry of Cement and Concrete, 4th ed. Edited by Peter C. Hewlett, John Wiley and Sons New York, 1998.
- /SHA90/ Sharp, Bushnell-Watson, Payne & Ward (1990): "The effect of admixtures on the hy-

- dration of refractory calcium aluminate cements". In: Mangabhai, R. J. (Hrsg.): "Calcium aluminate cements", Proceedings of the International Symposium Held at Queen Mary and Westfield College, University of London.
- /SIM07/ Simmat, R.; Sokoll, T.; Pötschke, J.; Quirmbach, P.; Finke, V.; Castor, L.; Litovsky, E.: "Thermal conductivity in the Range of 200 to 1600 °C due to the Monotonic Heating Method", Cfi/Ber. DKG 84, E115–E119, 2007.
- /SIM09/ Simmat, R.; Jahn, D.; Neuroth, M.; Nover, G.: "Comparison of Methods for the detection of Sintering and Melting in Lignite Ashes", Proceedings of 52nd Int. Coll. on Refractories, Aachen, 42–45, 2009.
- /SIM15/ Simmat, R.; Brochen, E.; Dannert, C.; Krause, O.; Rathaj, M.: "In-situ determination of sintering processes in refractory materials by the method of monotonic heating (MMH)" Conference Proceedings UNITECR'15, Wien, 355, 2015.
- /SIM16/ Simmat, R.; Brochen, E.; Dannert, C.; Krause, O.; Rathaj, M.: "Phase Transformations and sintering in refractory materials identified by the method of monotonic heating (MMH)" Proceedings of 59th Int. Coll. on Refractories, Aachen, 246–250, 2016.
- /SIM16/ Simmat, R. et al: "Verbesserung der thermomechanischen Eigenschaften von feuerfesten Erzeugnissen bei Einsatztemperaturen zwischen 1000 bis 1550 °C durch gezielte Schmelzphasenbildung im keramischen Gefüge", Schlussbericht IGF-Forschungsvorhaben Nr. 17764 N, 2016.
- /SIM19/ Simmat, R.; Krause, O.; Dannert, C. et al.: "Influence of Additives on the Crystallization and Dehydration of Calcium-Aluminate-Hydrate Phases in Refractory Castables: Part II; Dehydration Observed by Monotonic Heating", Proceedings of UNITECR'19, Yokohama, 921–924, 2019.
- /SIM20/ Simmat, R.; Krause, O.: Verbesserung des Aufheizverhaltens Calcium-Aluminat-Zement-gebundener Feuerbetone durch Modifikation der Morphologie der hydraulisch wirksamen Zementhydratphasen ("Modifizierte Zementhydratphasen") Schlussbericht IGF-Forschungsvorhaben Nr. 19855 N, 2020.
- /SOR95/ Sorrentino, D.; Sorrentino, F.; George, M.: "Mechanisms of hydration of calcium aluminate cements", Material Science of Concrete IV, Ed. J. Skalny, S. Mindess, ACS. Westerville, OH, 41-90, 1995.
- /STE15/ Stein, T.; Krause, O.; Tischer, D.: "Rheological behaviour of refractory concrete by using the ball measurement system (BMS)", Proceedings of UNITECR, 230, 2015.
- /STE19/ Stein, T.; Krause, O.: "Radar Based Investigation of the Decomposition of Hydrate Phases in Calcium Alumina Concrete", Proceedings UNITECR, 933–936, 2019.
- /STE20/ Steffen, T.: Evaluation der digitalen Bilddatenerfassung im dreidimensionalen Raum

- zur zeitabhängigen Quantifizierung des Ausbreitmaßes von Vibrationsbetonen", Bachelorarbeit , Hochschule Koblenz, 2020.
- /STU02/ Studart, A.R.; Pandolfelli, V.C.; Tervoort, E.; Gauckler, L.J.: "Direct Coagulation Casting of Alumina Suspensions Using Jack Bean as a Urease Source", Journal of the American Ceramic Society 85(7), 1695-1698, 2002.
- /SWE01/ Sweegers, C.; de Coninck, H.C.; Meekes, H.: "Morphology evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions." J. Cryst. Growth 233, 567–582, 2001.
- /TER04/ Tervoort, E.; Tervoort, T.A.; Gauckler, L.J.: "Chemical Aspects of Direct Coagulation Casting of Alumina Suspensions", J. Am. Cer. Soc. 87(8), 1530-1535, 2004.
- /TIS15/ Tischer, D.; Krause, O.; Kasper, J.: "The formation velocity of CA hydrate phases in refractory castables after water addition." Proceedings UNITECR, 342, 2015.
- /TRE87/ Trettin, R.; Rettel, A.; Gessner, W.: "Zum Verlauf der Hydratation des CaO*Al₂O₃ in den Primarstadien", Z. für anorganische und allgemeine Chemie 547, 133-141, 1987.
- /UKR07/ Ukrainczyk, N.; Matusinovic, T.; Kurajica, S.; Zimmermann, B.; Sipusic, J.: "Dehydration of a layered double hydroxide C₂AH₈", Thermochimica Acta 464,7–15, 2007.
- /ULB18/ Ulbrich, C.; Krause, O.; Stein, T. et al.: "Modification of the morphology of cement hydrate phases by using surface reactive substances", Proceedings of 61st International Colloquium on Refractories, Aachen, 87-91, 2018.
- /WAN16/ Wang, Y. et al.: "Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables", Ceramics International 42, 1, 711–720, 2016.
- /WAN16b/ Wang, Y. et al.: "Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables", Ceramics International 42, 9, 11355–11362, 2016.
- /WHI37/ White, H.E.; Walton, S.F.: "Particle packing and particle shape", Journal of the American Ceramic Society 20(1-12), 155-166, 1937.
- /WSH90/ Schulle, W.: "Feuerfeste Werkstoffe", 1. Auflage 1990, ISBN 3-342-00306-5, S. 80-83
- /WÖH15/ Wöhrmeyer, C.: "Permeability Measurement of dense castables" Kurzinformation zur Testmethode, Kerneos, 2015
- /YIM09/ Yimén, R.; Jäglid, U.; Steenari, B.; Panas, I.: "Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques", Cement and Concrete Research 39, 433–439, 2009.